• Title/Summary/Keyword: Test configuration

Search Result 1,238, Processing Time 0.031 seconds

A Study on Development of the High-Power Low-Loss Waveguide Circulator for Ka-band Millimeter-Wave Seeker (밀리미터파대역(Ka-대역)탐색기용 고 전력 저 손실 도파관 순환기 개발에 관한 연구)

  • Jung, Chae-Hyun;Han, Sung-Min;Baek, Jong-Gyun;Lee, Kook-Joo;Park, Chang-Hyun;Kwon, Jun-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.83-88
    • /
    • 2017
  • In this paper, a 3-port waveguide circulator of Ka-band millimeter-wave for isolation between transmit channel and receive channel at high power transmit mode is designed and fabricated for the seeker of the guided missile and circulator performance is verified through the S-parameter, high power and operation temperature test. At the configuration design, interface design between a seeker antenna and the circulator is considered and half-height of standard waveguide is applied for minimum and light weight body. The shape of permanent magnet and ferrite is optimized by simulation and tuning dielectrics at each port are placed for the best performance. In Fc(center frequency)${\pm}1000MHz$, designed waveguide circulator has below -20 dB return loss, below 0.5 dB insertion loss and below -23 dB isolation. It is found that circulator characteristics is similar to design results.

A Study on the High-power Low-loss Dual Axes Waveguide Rotary Joint for Ka-Band Millimeter-Wave Small Radar (밀리미터파대역(Ka-대역)소형 레이더용 고 전력 저 손실 2축 도파관 로터리 조인트 연구)

  • Jung, Chae-Hyun;Sung, Jong-Hyun;Baek, Jong-Gyun;Lee, Kook-Joo;Park, Chang-Hyun;Kwon, Jun-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.91-96
    • /
    • 2018
  • In this paper, dual axes waveguide rotary joint, which operates at high power and has low loss characteristic, is designed and fabricated for a Ka-band millimeter-wave small radar. Its electrical performance is verified through the S-parameter at room temperature, high power and operation temperature test. Rotary joint functionally consists of the mode converter transforming rectangular waveguide into circular waveguide and the choke at the rotation part. At the configuration design, linking a fixed transmitter to an antenna rotating dual axes electrically for minimum loss and light weight body are considered. In Fc(center frequency)${\pm}500MHz$, the designed rotary joint has VSWR 1.5:1 below return loss, -2.0 dB above insertion loss. It is found that rotary joint characteristics is similar to design results.

Development of 8kW ZVZCS Full Bridge DC-DC Converter by Parallel Operation (병렬제어를 적용한 8kW급 영전압/영전류 풀 브릿지 DC-DC 컨버터 개발)

  • Rho, Min-Sik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.400-408
    • /
    • 2007
  • In this paper, development of the 8kW parallel module converter is presented. For a effective configuration of FB-PWM converter, this paper proposes 4-parallel operation of 2 kw-module. FB converter of 2-kW module is controlled by phase shut PWM and in order to achieve ZVZCS, the simple auxiliary circuit is applied in secondary side. In order to achieve ZCS, control logic for auxiliary circuit operation is designed to reset the primary current during free-wheeling period. For output current sharing of 4-modules, the charge control is employed. The charge control logic is designed with phase shift PWM logic. Voltage controller is implemented by using DSP(TMS320LF2406) with A/D conversion data of the output current and voltage of each module. The developed converter is installed in PCU(Power Conditioning Unit) for HSG(High Speed Generator) in a vehicle and health monitoring system is implemented for vehicle operation test. Finally, performance of the developed converter is proved under practical operation of HSG.

Investigation on Failure Mechanism of Back-to-Back Geosynthethic Reinforced Wall Using Discrete Element Analysis (불연속체 해석을 이용한 Back-to-Back 보강토 옹벽의 파괴 메커니즘에 관한 연구)

  • Yoo, Chung-Sik;Woo, Seung-Je;Jeon, Hun-Min;Shin, Bu-Nam
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.55-66
    • /
    • 2011
  • This paper presents the results of an investigation on the failure mechanism of geosynthetic reinforced soil walls in back-to-back configuration using 1-g reduced-scale model tests as well as discrete element method-based numerical investigation. In the 1-g reduced scale model tests, 1/10 scale back-to-back walls were constructed so that the wall can be brought to failure by its own weight and the effect of reinforcement length on the failure mechanism was investigated. In addition, a validated discrete element method-based numerical model was used to further investigate the failure mechanism of back-to-back walls with different boundary conditions. The results were then compared with the failure mechanisms defined in the FHWA design guideline.

Enhancement of delamination strength in Cu-stabilized coated conductor tapes through additional treatments under transverse tension at room temperature

  • Shin, Hyung-Seop;Bautista, Zhierwinjay;Moon, Seung-Hyun;Lee, Jae-Hun;Mean, Byoung-Jean
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.25-28
    • /
    • 2017
  • In superconducting coil applications particularly in wet wound coils, coated conductor (CC) tapes are subjected to different type of stresses that could affect its electromechanical transport property. These include hoop stress acting along the length of the CC tape and the Lorentz force acting perpendicular to the CC tape's surface. Since the latter is commonly associated with the delamination problem of multi-layered REBCO CC tapes, more understanding and attention on the delamination phenomena induced in the case of coil applications are needed. Difference on the coefficient of thermal expansion (CTE) of each constituent layer of the CC tape, the bobbin, and the impregnating materials is the main causes of delamination in CC tapes when subjected to thermal and mechanical cycling. In the design of degradation-free superconducting coils, therefore, characterization of the delamination behaviors including mechanism and strength in the multi-layered REBCO CC tapes becomes a critical issue. Various trials to increase the delamination strength by improving interface characteristics at interlayers have been performed. In this study, in order to investigate the influences of laser cleaning and Ag annealing treated at the substrate side surface, transverse tensile tests were conducted under different sample configurations using $4.5mm{\times}8mm$ upper anvil. The mechanical delamination strength of differently processed CC samples was examined at room temperature (RT). As a result, the Sample 1 with the additional laser cleaning and Ag annealing processes and the Sample 2 with additional Ag annealing process only showed higher mechanical delamination strength as compared to the Sample 3 without such additional treatments. Sample 3 showed quite different behavior when the loading direction is to the substrate side where the delamination strength much lower as compared to other cases.

A Study on the Analysis of $CO_2$ Concentration Variation According to the Indoor Space Condition Changes (다양한 실내 환경에서의 $CO_2$ 농도 변화 분석 연구)

  • Ahn, Gwang-Hoon;Kwon, Jong-Won;Kim, Gyu-Sik;Kim, Hie-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.347-349
    • /
    • 2009
  • Air quality of indoor space environment is affected by various pollutants like as particles and chemical stuffs. The indoor air pollution affects directly the human respiration organs to cause consequently unpleasant mental status. The $CO_2$ concentration level is one of the harmful components of air pollutants. Major factor to increase the $CO_2$ concentration level is the people's breath amount in indoor. The car exhaust gas diffused from the around road also has strong affect on $CO_2$ concentration. There are some other reasons to affect the $CO_2$ concentration change, such as, real-time change of the population movement, closeness to the indoor air flow inlet window and changes in road car traffic amount. A remote monitoring system to measure environmental indoor air pollution concerning on the $CO_2$ concentration was studied and installed realized set-up model. Zigbee network configuration was applied for this system and the $CO_2$ concentration data were collected through USN network. A software program was developed to assure systematic analysis and to display real-time data on web pages. For the experimental test various condition was set up, like as, window opening, stopping air condition operation and adjusting fan heater work, etc. The analysis result showed the relation of various environmental conditions to $CO_2$ concentration changes. The causes to increase $CO_2$ concentration were experimentally defined as windows closing, the stopping air condition system, fan heater operation. To keep the $CO_2$ concentration under the legally required ppm level in public access indoor space, the developed remote measurement system will be usefully applied.

  • PDF

A Study of Straight Pipe Length and Straightener in Orifice Meter Turbine Meter (오리피스 유량계와 터빈 유량계의 직관부길이와 유동안정기에 관한 연구)

  • Her, Jae-Young;An, Seung-Hee;Lee, Kang-Jin;Lee, Seung-Jun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.265-271
    • /
    • 2000
  • Orifice meters and turbine meters are frequently used for measuring gas flow in gas industry. However, to insure the accuracy of the measurement, a certain length of the meter run at the upstream of the flow meter is required. The objective of this study is to analyze flow measurement errors of the orifice meter quantitatively for shorter lengths of the meter runs than those suggested in the standard manuals with variation of diameter ratio( $\beta$ ratio) and flow rate and also to analyze flow measurement errors of the turbine meter with and without straightener. The test results showed that the flow measurement errors of the orifice meter were inversely proportional to the diameter ratio. In other words, when the diameter ratio is 0.3 and 0.7, the measurement error is $-7.3\%$ and $-3.5\%$, respectively. the main reason of the measurement error is due to the swirl effect from the configuration of the meter run at the upstream of the flow meter. In case the length of the meter run is shorter than that suggested In the standard, the swirl effect is not removed completely and it affects the flow meter's performance. As mentioned above, the less the pipe diameter ratio, the mon the flow measurement error. It means that the swirl effect on the orifice meter increases as the $\beta$ ratio decreases.

  • PDF

Disparity-based Depth Scaling of Multiview Images (변이 기반 다시점 영상의 인식 깊이감 조절)

  • Jo, Cheol-Yong;Kim, Man-Bae;Um, Gi-Mun;Hur, Nam-Ho;Kim, Jin-Woong
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.796-803
    • /
    • 2008
  • In this paper, we present a depth scaling method for multiview images that could provide an 3D depth that a user prefers. Unlike previous works that change a camera configuration, the proposed method utilizes depth data in order to carry out the scaling of a depth range requested by users. From multivew images and their corresponding depth data, depth data is transformed into a disparity and the disparity is adjusted in order to control the perceived depth. In particular, our method can deal with multiview images captured by multiple cameras, and can be expanded from stereoscopic to multiview images. Based upon a DSCQS subjective evaluation test, our experimental results tested on an automultiscopic 3D display show that the perceived depth is appropriately scaled according to user's preferred depth.

Numerical Analysis of Flow Distribution Inside a Fuel Assembly with Split-Type Mixing Vanes (분할 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석)

  • Lee, Gong Hee;Cheong, Ae Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.329-337
    • /
    • 2016
  • As a turbulence-enhancing device, a mixing vane, which is installed at a spacer grid of the fuel assembly, plays an important role in improving convective heat transfer by generating either swirl flow in the subchannels or cross flow between the fuel rod gaps. Therefore, both the geometric configuration and the arrangement pattern of a mixing vane are important factors in determining the performance of a mixing vane. In this study, in order to examine the flow-distribution features inside a $5{\times}5$ fuel assembly with split-type mixing vanes, which was used in the benchmark calculation of the OECD/NEA, we conduct simulations using the commercial computational fluid dynamics software, ANSYS CFX R.14. We compare the predicted results with measured data obtained from the MATiS-H (Measurement and Analysis of Turbulent Mixing in Subchannels-Horizontal) test facility. In addition, we discuss the effect of the split-type mixing vanes on the flow pattern inside the fuel assembly.

Estimation of Hydrodynamic Coefficients for AUV-SNUUV I (AW-SNUUV I의 동유체력 계수 추정)

  • Kim Kihun;Kim Joonyoung;Shin Minseop;Choi Hang S.;Seong Woojae
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.201-204
    • /
    • 2002
  • This paper describes the hydrodynamic characteristics of a test-bed AUV SNUUV-I constructed at Seoul National University. The main purpose of the AUV is to carry out fundamental control and hydrodynamic experiments. Its configuration is basically a long cylinder of 1.35m in length and 0.25m in diameter with delta-type wings near its rear end. On the edge of each wing, a thruster of 1/4HP is mounted, which is used for both drive and turn the vehicle for horizontal movement as the output control power is varied. A pair of control surfaces installed near its font part generates pitch moments for vertical movement. The 6 DOF mathematical model of SNUUV-I contains hydrodynamic forces and moments expressed in terms of a set of hydrodynamic coefficients. These coefficients can be classified into linear damping coefficients, linear inertial coefficients and nonlinear damping coefficients. It is important to estimate the exact value of these coefficients to control the vehicle precisely. Among these, the linear coefficients are known to affect the motion of the vehicle dominantly. The linear damping coefficients are estimated by using Extended Kalman Filter. The responses of the vehicle to input signals are used to estimate the hydrodynamic coefficients, which can be inferred from output signals measured from an IMU (inertial motion unit) sensor, while the linear inertial coefficients are calculated by a potential code. By using these coefficients estimated as described above, a simulation program is constructed using Matlab.

  • PDF