• Title/Summary/Keyword: Test compression

Search Result 2,720, Processing Time 0.028 seconds

Effects of Vibration Fatigue on Compression Strength of Corrugated Fiberboard Containers for Packaging of Fruits during Transport

  • Jung, Hyun-Mo;Park, Jeong-Gil
    • Journal of Biosystems Engineering
    • /
    • v.37 no.1
    • /
    • pp.51-57
    • /
    • 2012
  • Purpose: The compression strength of corrugated fiberboard containers used to package agricultural products rapidly decreases owing to various environmental factors encountered during the distribution of unitized products. The main factors affecting compression strength are moisture absorption, long-term top load, and fatigue caused by shock and vibration during transport. This study characterized the durability of corrugated fiberboard containers for packaging fruits and vegetables under simulated transportation conditions. Methods: Compression tests were done after corrugated fiberboard containers containing fruit were vibrated by an electro-dynamic vibration test system using the power spectral density of routes typically traveled to transport fruits and vegetables in South Korea. Results: To predict loss of compression strength owing to vibration fatigue, a multiple nonlinear regression equation ($r^2=0.9217$, $RMSE=0.6347$) was developed using three independent variables of initial container compression strength, namely top stacked weight, loading weight, and vibration time. To test the applicability of our model, we compared our experimental results with those obtained during a road test in which peaches were transported in corrugated containers. Conclusions: The comparison revealed a highly significant ($p{\leq}0.05$) relationship between the experimental and road-test results.

Compression Behavior of Form Block Walls Corresponding to the Strength of Block and Grout Concrete

  • Seo, S.Y.;Jeon, S.M.;Kim, K.T.;Kuroki, M.;Kikuchi, K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.21-33
    • /
    • 2015
  • This study aimed to present a reinforced concrete block system that reduces the flange thickness of the existing form block used in new buildings and optimizes the web form, and can thus capable of being used in the seismic retrofit of new and existing buildings. By conducting a compression test and finite element analysis based on the block and grouted concrete strength, it attempted to determine the compression capacity of the form block that can be used in new construction and seismic retrofit. As a result, the comparison of the strength equation from Architectural Institute of Japan to the prism compression test showed that the mortar coefficient of 0.55 was suitable instead of 0.75 recommended in the equation. The stress-strain relation of the block was proposed as a bi-linear model based on the compression test result of the single form block. Using the proposed model, finite element analysis was conducted on the prism specimens, and it was shown that the proposed model predicted the compression behavior of the form block appropriately.

Determination of Flow Stress and Friction Factor by the Ring Compression Test (II) (링압축실험에 의한 유동응력 및 마찰인자의 결정 (II))

  • 최영민;김낙수
    • Transactions of Materials Processing
    • /
    • v.3 no.2
    • /
    • pp.215-228
    • /
    • 1994
  • The purpose of this paper is to pursue a general method to determine both the flow stress of a material and the friction factor by ring compression test. The materials are assumed to obey the expanded n-power hardening rule including the strain-rate effect. Ring compression is simulated by the rigid-plastic finite element method to obtain the database used in determining the flow stress and friction factor. The Simulation is conducted for various strain hardening exponent, strain-rate sensitivity, friction factor, and compressing speed, as variables. It is assumed that the friction factor is constant during the compression process. To evaluate the compatibility of the database, experiments are carried out at room and evaluated temperature using specimens of aluminum 6061-T6 under dry and grease lubrication condition. It is shown that the proposed test method is useful and easy to use in determining the flow stress and the friction factor.

  • PDF

Mechanical Response of Changes in Design of Compression Hip Screws with Biomechanical Analysis (생체 역학적 분석에 의한 Compression Hip Screw의 디자인 요소에 대한 평가)

  • 문수정;이희성;권순영;이성재;안세영;이훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1172-1175
    • /
    • 2004
  • At present, CHS(Compression Hip Screw) is one of the best prosthesis for the intertrochanteric fracture. There is nothing to evaluate the CHS itself with the finite element analysis and mechanical tests. They have same ways of the experimental test of the ASTM standards. The purpose of this study is to evaluate the existing CHS and the new CHS which have transformational design factors with finite element analysis and mechanical tests. The mechanical tests are divided into compression tests and fatigue test for evaluating the failure load, strength and fatigue life. This finite element method is same as the experimental test of the ASTM standards. Under 300N of compression load at the lag screw head. There are less differences between Group (5H, basic type) and Group which has 8 screw holes. However, there are lots of big differences between Group and Group which is reinforced about thickness of the neck range. Moreover, the comparison of Group and Group shows similar tendency of the comparison of Group and Group . The Group is reinforced the neck range from Group. After the experimental tests and the finite element analysis, the most effective design factor of the compression hip screws is the reinforcement of the thickness, even though, there are lots of design factors. Moreover, to unite the lag screw with the plate and to analyze by static analysis, the result of this method can be used with experimental test or instead of it.

  • PDF

FDR Test Compression Algorithm based on Frequency-ordered (Frequency-ordered 기반 FDR 테스트패턴 압축 알고리즘)

  • Mun, Changmin;Kim, Dooyoung;Park, Sungju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.106-113
    • /
    • 2014
  • Recently, to reduce test cost by efficiently compressing test patterns for SOCs(System-on-a-chip), different compression techniques have been proposed including the FDR(Frequency-directed run-length) algorithm. FDR is extended to EFDR(Extended-FDR), SAFDR(Shifted-Alternate-FDR) and VPDFDR(Variable Prefix Dual-FDR) to improve the compression ratio. In this paper, a frequency-ordered modification is proposed to further augment the compression ratios of FDR, EFDR, SAFRD and VPDFDR. The compression ratio can be maximized by using frequency-ordered method and consequently the overall manufacturing test cost and time can be reduced significantly.

Characteristics of Undrained Shear Strength of Yangsan Clay (양산지역 점토의 비배수 전단강도 특성)

  • 김길수;임형덕;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.71-78
    • /
    • 2000
  • SHANSEP method involves the consolidation to stresses in excess of the preconsolidation pressure in order to overcome sample disturbance effect. The concept of SHANSEP is based on an approach to laboratory test which attempts to reproduce the in-situ conditions more closely than is possible in routine tests and evaluates normalized strength parameters for the soil as a function of OCR. But SHANSEP method can be applied only to fairly uniform clay deposits, and is unsuitable for a random deposit. In this study, CK/sub o/U triaxial compression test and incremental loading consolidation test were performed for the application of SHANSEP method on Yangsan clay. During the K/sub o/-consolidation, triaxial specimens were consolidated to stress equal to two times the in-situ vertical effective stress. And for overconsolidated condition, the specimens were swelled to a known vertical effective stress in order to have the desired OCR. With the results of CK/sub o/U triaxial compression test using the block samples, the relationship between c/sub u//σ/sub vc/' and OCR on Yangsan clay was established. For evaluating the undrained shear strength of Yangsan clay with depth, CK/sub o/U triaxial compression test was performed using the piston samples taken from Yangsan site. And also undrained shear strength was analyzed from the in-situ test such as Cone Penetration Test(CPT), Dilatometer Test(DMT), and Field Vane Test(FVT) and was compared with that of CK/sub o/U triaxial compression test.

  • PDF

An Efficient Technique to Improve Compression for Low-Power Scan Test Data (저전력 테스트 데이터 압축 개선을 위한 효과적인 기법)

  • Song, Jae-Hoon;Kim, Doo-Young;Kim, Ki-Tae;Park, Sung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.104-110
    • /
    • 2006
  • The huge test data volume, test time and power consumption are major problems in system-on-a-chip testing. To tackle those problems, we propose a new test data compression technique. Initially, don't-cares in a pre-computed test cube set are assigned to reduce the test power consumption, and then, the fully specified low-power test data is transformed to improve compression efficiency by neighboring bit-wise exclusive-or (NB-XOR) scheme. Finally, the transformed test set is compressed to reduce both the test equipment storage requirements and test application time.

Effect of pre-educational evaluation on CPR education of the General population (일반인의 심폐소생술 교육에 대한 사전 교육 평가의 영향)

  • Yang, Hyun-Mo;Kim, Gyoung-Yong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.105-111
    • /
    • 2021
  • The purpose of this study is to determine how the pre-test performed before training affects the results of CPR performance. In the case of the pre-test group(PTG), a pre-evaluation was performed for 1 minute before training, and the group that did not perform the pre-test(NPTG) performed only regular education. In both groups, skill test was performed for 1 minute after training. As a result of comparing the pre and post-test of PTG, there were statistically significant changes in chest compression depth, rate, and compression recoil. There was a statistically significant difference only in the chest compression rate in the chest compression performance results of the two groups after training. There was a statistically significant difference in the results of confidence after training in both groups. It is judged that the pre-test conducted before training has a good influence not only on the results of chest compression, but also on confidence improvement. Therefore, it is judged that it is necessary to develop additional programs such as pre-education test in order to increase the concentration of CPR education for the general population.

A simplified method to estimate the total cohesion of unsaturated soil using an UC test

  • Lin, Horn-Da;Wang, Chien-Chih;Wang, Xu-Hui
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.599-608
    • /
    • 2018
  • This study investigates the feasibility of adopting the results of the UC (unconfined compression) test to assess the total cohesion of the unsaturated soil. A series of laboratory tests were conducted on samples of unsaturated lateritic soils of northern Taiwan. Specifically, the unconfined compression test was combined with the pressure plate test to obtain the unconfined compression strength and its matric suction of the samples. Soil samples were first compacted at designated water content and then subjected to the wetting process for saturation and the subsequent drying process to its target suction using the apparatus developed by the authors. The correlations among the matric suction, the unconfined compression strength and the total cohesion were studied. As a result, a simplified method to estimate the total cohesion using the unconfined compressive strength is suggested. The calculated results compare reasonably with the unsaturated triaxial test results. Current results show good performance; however, further study is warranted.