• Title/Summary/Keyword: Test Load

Search Result 8,103, Processing Time 0.039 seconds

Application of Damage Index for Limit State Evaluation of a Steel Pipe Tee (강재 배관 Tee의 한계상태 평가를 위한 손상지수의 적용)

  • Kim, Sung-Wan;Yun, Da-Woon;Jeon, Bub-Gyu;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.30-39
    • /
    • 2022
  • Maintaining structural integrity of major apparatuses in a nuclear power plant, including piping system, is recognized as a critical safety issue. The integrity of piping system is also a critical matter related to the safety of a nuclear power plant. The actual failure mode of a piping system due to a seismic load is the leakage due to a fatigue crack, and the structural damage mechanism is the low-cycle fatigue due to large relative displacement that may cause plastic deformation. In this study, in-plane cyclic loading tests were conducted under various constant amplitudes using specimens composed of steel straight pipes and a steel pipe tee in the piping system of a nuclear power plant. The loading amplitude was increased to consider the relative displacement generated in the piping system under seismic loads, and the test was conducted until leakage, which is the limit state of the steel pipe tee, occurred due to fatigue cracks. The limit state of the steel pipe tee was expressed using a damage model based on the damage index that used the force-displacement relationship. As a result, it was confirmed that the limit state of the steel pipe tee can be quantitatively expressed using the damage index.

Experiments of Water Mist System Application for Rack Storage (랙크식 창고에 대한 미분무 시스템 적용성 실험)

  • Myoung, Sang-Yup;Kim, Jong-Hoon
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.627-637
    • /
    • 2020
  • Purpose: This experimental study was conducted to find out whether a water-mist fire suppression system can be applied to C.E.P., a representative combustible material of a rack storage. Method: First, it was confirmed whether the water-mist fire-extinguishing system used in this experiment was capable of extinguishing oil fires. After that, the C.E.P. boxes were loaded in the same small space as used in the oil fire experiment, and then the experiment was conducted on three scenarios; door opening, door closing, and door closing and increasing the internal load. The scenario was set considering the opening and space size conditions, which are important factors for the water-mist fire suppression. Result: Oil fire suppression tests have shown that fires are well extinguished in both the door open and closed conditions. In case of a fire of C.E.P. boxes in the same space condition as an oil fire, the fire was not extinguished in the door open condition. Fires were extinguished in the case with the door closed condition, but the afterglow was confirmed. Conclusion: In the oil fire suppression test, a water-mist fire suppression system extinguished a fire in both the door open and closed conditions. However, for the C.E.P fire, it was possible to extinguish only under the door closed condition, and there was a possibility of re-ignition.

A Study on Evaluating Damage to Railway Embankment Caused by Liquefaction Using Dynamic Numerical Analysis (동적수치해석을 이용한 액상화로 인한 철도제방 피해도 평가법 개발 연구)

  • Ha, Ik-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.149-161
    • /
    • 2022
  • This study selected the indexes for evaluating the damage of the railway embankments due to liquefaction from the earthquake damage cases of railway embankments. The study correlated the selected indexes and the settlement of the embankment crest from the dynamic numerical analysis. Further, the correlation was used to develop a method for evaluating the liquefaction damage to the railway embankment. The damage cases and damage types were analyzed, and referring to the liquefaction damage assessment method for other structures, the embankment height (H), the non-liquefiable layer thickness (H1), and the liquefaction potential index were selected as indexes for evaluating the damage. The study performed dynamic effective stress analyses on the railway embankment, and the PM4-Sand model was applied as the constitutive liquefaction model for the embankment foundation ground. The model's validity was first verified by comparing it with the existing dynamic centrifugal model test results performed on the railway embankment. Nine sites where the foundation ground can be liquefied were selected from the data of 549 embankments of the Honam High-speed Railway in Korea. Further, dynamic numerical analyses using four seismic waves as input earthquake load were performed for the selected site sections. The numerical analysis results confirmed the correlation between the evaluation indexes and the embankment crest settlement. A method for efficiently evaluating the damage to the embankment due to liquefaction was proposed using the chart obtained from this correlation.

Development of Block-based Code Generation and Recommendation Model Using Natural Language Processing Model (자연어 처리 모델을 활용한 블록 코드 생성 및 추천 모델 개발)

  • Jeon, In-seong;Song, Ki-Sang
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.3
    • /
    • pp.197-207
    • /
    • 2022
  • In this paper, we develop a machine learning based block code generation and recommendation model for the purpose of reducing cognitive load of learners during coding education that learns the learner's block that has been made in the block programming environment using natural processing model and fine-tuning and then generates and recommends the selectable blocks for the next step. To develop the model, the training dataset was produced by pre-processing 50 block codes that were on the popular block programming language web site 'Entry'. Also, after dividing the pre-processed blocks into training dataset, verification dataset and test dataset, we developed a model that generates block codes based on LSTM, Seq2Seq, and GPT-2 model. In the results of the performance evaluation of the developed model, GPT-2 showed a higher performance than the LSTM and Seq2Seq model in the BLEU and ROUGE scores which measure sentence similarity. The data results generated through the GPT-2 model, show that the performance was relatively similar in the BLEU and ROUGE scores except for the case where the number of blocks was 1 or 17.

A Study on Simplified Analysis and Estimation Method for Evaluation of Structural Safety in Modular Underground Arch Structure (모듈러 지중아치 구조 안전성 검토를 위한 간략 해석 및 평가방법에 관한 연구)

  • Kwon, Tae-Yun;Cho, Kwang-Il;Lee, Wong-Hong;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.55-63
    • /
    • 2022
  • A modular underground arch structure using steel and concrete has been proposed as a structure that has a simple construction process and can effectively resist cross-sectional forces generated during construction and use. Structural behavior of modular underground arch was evaluated about span length less than 15m through 3D structural analysis and test. In general, 2D and 3D structural analysis methods may be applied for structural analysis such as underground arch and tunnels. However, if a 2D or 3D structural analysis method is applied to evaluate the structural safety of a modular underground arch structure, it is difficult to model for structural analysis and it may take an excessively long time to interpret. Therefore, it may not be reasonable as a structural analysis method for considering the structural safety and earth pressure in the design process of a modular underground arch structure. In addition, when a modular underground arch structure is configured for span lengths to which the predetermined cross-section is applicable, it may be reasonable to evaluate only the safety of the structure and cross-section according to the cross-section and load conditions. Therefore, in this study, a structural analysis model using frame elements was proposed for efficient structural safety evaluation. In addition, structural analysis results of the 2D structural analysis model and the simplified analysis model using frame elements were compared, and the structural safety of the modular underground arch structure for a span length of 20m was evaluated with a simplified analysis method.

A Cooperative Security Gateway cooperating with 5G+ network for next generation mBcN (차세대 mBcN을 위한 5G+ 연동보안게이트웨이)

  • Nam, Gu-Min;Kim, Hyoungshick;Lee, Hyun-Jin;Cho, Hark-Su
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.129-140
    • /
    • 2021
  • The next generation mBcN should be built to cooperate with the wireless network to support hyper-speed and hyper-connectivity. In this paper, we propose a network architecture for the cooperation mBcN and 5G commercial network and architecture of the cooperative security gateway required for the cooperation. The proposed cooperative security gateway is between gNB and UPF to support LBO, SFC, and security. Our analysis shows that the proposed architecture has several advantages. First of all, user equipment connected with the mBcN can be easily connected through the 5G commercial radio network to the mBcN. Second, the military application traffic can be transmitted to mBcN without going through the 5G core network, reducing the end-to-end transmission delay without causing the traffic load on the 5G core network. In addition, the security level of the military application can effectively be maintained because the user equipment can be connected to the cooperative security gateway, and the traffic generated by the user equipment is transmitted to the mBcN without going through the 5G core network. Finally, we demonstrate that LBO, SFC, and security modules are essential functions of the proposed gateway in the 5G test-bed environment.

Damping Performance Evaluation of Hysteretic Strip Damper with Curvature (곡률이 있는 이력형 스트립 댐퍼의 감쇠 성능 평가)

  • Jae Won Lee;Dong Baek Kim;Yong Gon Kim;Jeong Ho Choi;Jong Hoon Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.572-581
    • /
    • 2023
  • Purpose: The purpose of this study is to improve the irregularity of the stress-strain curve and to ensure accuracy when calculating the damping effect by preventing members from moving in the off-plane direction due to eccentricity when loads are applied. Method: The specifications of the steel strips used in this study are the same, but the curvature of the strips to constitute each damper is different. Each steel strip with different curvature was arranged in an triangle, three dampers with different curvature were made, and repeated load tests were conducted, and the amount of energy dissipation was calculated to measure the performance of the damper. Result: The amount of energy dissipation significantly decreases compared to the case where there is no initial curvature, and the change in the test energy dissipation amount according to the size of the curvature is not large, and the presence or absence of the hyperbolic rate is considered an important variable. Conclusion: The period is about 78.7% longer from T=0.3 to T=0.536sec, and the response spectrum acceleration is reduced from Sa=0.54g to Sa=0.229g, so the damping effect of the damper is sufficient.

Evaluation on Side Resistance of Drilled Shafts Constructed on Sandy Gravel and Gravel Layers in Nakdong River Estuary (낙동강 하구 모래 자갈 및 자갈층에 시공된 현장타설말뚝의 주면마찰력 평가)

  • Dong-Lo Choi;Tae-Hyung Kim;Byeong-Han Jeon;Jun-Seo Jeon;Chea-Min, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Recently, numerous structures have been constructed near the Nakdong river estuary, with pile foundations embedded in sand and gravel layers. In this study, the side resistance for six drilled shafts embedded in that region was evaluated based on the results of bi-directional and static axial compressive pile load tests. Subsequently, these results were compared with the side resistance calculated using domestic and foreign design codes such as FHWA (1999), KDS (2021), and AIJ (2004). Based on the test results, the evaluated side resistances ranged from 120 to 444kPa. However, the estimated values obtained from the design codes ranged from 69.3 to 170kPa, which were less than 50% of the evaluated values. It was observed that the empirical methods and correlations used in design codes provide a conservative estimation of the side resistance for drilled shafts embedded in sand and gravel layers. It implies that a suitable domestic approach should be developed to accurately estimate the side resistance of pile in sandy gravel and gravel layers near the Nakdong river estuary.

A Study on the Numerical Analysis Methods for Predicting Strength Test Result of Box Girder under Bending Moment (휨 모멘트를 받는 박스거더 구조 강도 실험에 대한 수치해석 방법에 관한 연구)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.488-496
    • /
    • 2023
  • Ship and bridge structures are a type of long box-shaped structure, and resistance to vertical bending moment is a key factor in their structural design. In particular, because box girders are repeatedly exposed to irregular wave loads for a long time, the continuous collapse behavior of structural members must be accurately predicted. In this study, plastic collapse behavior, including buckling according to load changes of the box girder receiving pure bending moments, was analyzed using a numerical analysis method. The analysis targets were selected as three box girders used in the Gordo experiment. The cause of the difference was considered by comparing the results of the structural strength experiment with those of non-linear finite element analysis. This study proposed a combination of the entire and local sagging shape to reflect the effect of the initial sagging caused by welding heat that is inevitably used to manufacture carbon steel materials. The procedures reviewed in the study and the contents of the initial sagging configuration can be used as a good guide for analyzing the final strength of similar structures in the future.

Ductility Improvement of Square RC Columns by Using Continuous Spiral Stirrup (연속 횡방향철근 개발을 통한 사각기둥의 연성화)

  • Cho, Kyung Hun;Lee, Tae Hee;Lee, Jung Bin;Kim, Sung Bo;Kim, Jang Jay Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.149-156
    • /
    • 2023
  • Recently, concerns about natural disasters such as earthquakes, tsunamis and typhoons have increased. As the magnitude and frequency of earthquakes increase, research is needed to prevent structures from collapsing due to earthquake loads. Research is needed to increase the ductility of columns to prevent the collapse of structures. In this study, the ductility improvement of square columns achieved by applying spiral stirrups to square columns. Square columns reinforced with spiral stirrups are more resistant to repetitive loads such as seismic loads than columns reinforced with tie stirrups. Also, the spiral stirrups can apply better confinement to the concrete. In this study, an uniaxial compression test was conducted to evaluate the performance of columns reinforced with spiral stirrups. The results showed that the columns reinforced with spiral stirrups in both the circular and square columns showed higher compressive strength than the columns reinforced with the tie stirrups. In addition, the columns reinforced with spiral stirrups for both the square and circle columns, showed a tendency to endure the load even after the initial cracking and rebar yielding.