• Title/Summary/Keyword: Terrestrial LiDAR data

Search Result 72, Processing Time 0.031 seconds

Slope transformation detection by using Terrestrial LiDAR data (지상 LiDAR자료를 이용한 사면변화 탐지)

  • Park, Keon;Yang, In-Tae;Choi, Seung-Pil;Kim, Sung-Hak
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.318-323
    • /
    • 2008
  • 국부적이지만 수 mm단위까지 스캔이 가능한 지상LiDAR 장비를 이용하여 사면을 스캐닝한 후에 사면의 6개 지점에 대하여 강제로 변화를 준 후 다시 스캐닝하여 분석한 결과 0.008m의 평균편차를 나타내었다. 이것을 볼 때 미세변화 탐지를 위한 기법으로 지상 LiDAR자료의 적용이 유효할 것으로 판단된다.

  • PDF

Classification of Terrestrial LiDAR Data through a Technique of Combining Heterogeneous Data (이기종 측량자료의 융합기법을 통한 지상 라이다 자료의 분류)

  • Kim, Dong-Moon;Kim, Seong-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4192-4198
    • /
    • 2011
  • Terrestrial LiDAR is a high precision positioning technique to monitor the behavior and change of structures and natural slopes, but it has depended on subjective hand intensive tasks for the classification(surface and vegetation or structure and vegetation) of positioning data. Thus it has a couple of problems including lower reliability of data classification and longer operation hours due to the surface characteristics of various geographical and natural features. In order to solve those problems, the investigator developed a technique of using the NDVI, which is a major index to monitor the changes on the surface(including vegetation), to categorize land covers, combining the results with the terrestrial LiDAR data, and classifying the results according to items. The application results of the developed technique show that the accuracy of convergence was 94% even though there was a problem with partial misclassification of 0.003% along the boundaries between items. The technique took less time for data processing than the old hand intensive task and improved in accuracy, thus increasing its utilization across a range of fields.

A Study on Determining Control Points and Surveying Feature Points for Geo-Referencing of Terrestrial LiDAR Data in Urban Areas (도심지 지상 LiDAR 자료의 Geo-Referencing을 위한 기준점 선정 및 특징점 측량 방안 연구)

  • Park, Hyo-Keun;Han, Soo-Hee;Cho, Hyung-Sig;Kim, Sung-Hoon;Sohn, Hong-Gyoo;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.179-186
    • /
    • 2010
  • In this research, an effective method for absolute positioning of feature points is proposed, which is applicable to geo-referencing of terrestrial LiDAR data scanned in dense urban areas. GPS positioning, common in absolute positioning, is apt to fail in the presence of signal disturbancein dense urban circumstances, while traditional surveying methods, including traversing and leveling, are generally more costly for wider areas. The idea is that reference points, marked on top of buildings, are surveyed by GPS positioning and then feature points are relatively positioned from the reference points. The present method, if laser scanning is accompanied, gets two advantages; one is that less feature points need to be surveyed because they can be substituredby reference points, and the other is that laser scanning can be more stably carried out. The present method was shown, from the experiments, to be cost-effective against traditional ones.

Simulation of the Debris Flow Diffusion in the Mountainous Watershed Using 3D Terrain Data (3D 지형데이터를 활용한 산지유역 토석류 흐름 모의에 관한 연구)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.3
    • /
    • pp.1-11
    • /
    • 2019
  • This study selected the national park area of Mt. Seorak in Inje-gun, Gangwon-do, where a lot of debris flow occurred due to the heavy rainfall and conducted a field survey. In addition, topographic spatial data were constructed using the GIS technique to analyze watershed characteristics. For the construction of terrain data after the disaster, the debris flow occurrence section was scanned and the 3D topographic data was constructed using the terrestrial LiDAR. LiDAR terrain data are compared to digital maps(before disaster) to assess precision and topographic data before and after the disaster were compared and analyzed. Debris flow diffusion area was calculated using FLO-2D model and compared debris flow occurred section.

Research on Geo-Referencing Methodology of Point Clouds Data in Urban Area (포인트 클라우드 자료의 도심지 Geo-Referencing 방안 연구)

  • Cho, Hyung-Sig;Sohn, Hong-Gyoo;Han, Soo-Hee;Hwang, Sae-Mi-Na
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.285-287
    • /
    • 2010
  • It is recently enlarged to necessity of 3D spatial information model in urban areas. and in order to that, It is increased to use the terrestrial LiDAR. The Point clouds which are received by terrestrial LiDAR take a relateive coordinate. For transform into absolute coordinate, it carry out GPS surveying. However, it is difficult to geo-referencing of point clouds using the GPS due to high buildings and facilities in urban area. This study suggests a methodology, that is geo-referencing of point clouds which is received from terresstrial LiDAR in urban area and then verified accuracy of geo-referencing of point clouds. In order to geo-Referencing of point clouds which are received in Engineering building of Yonsei Univ., it was be setout through GPS surveying, and then obtained absolute coordinate of real building. Using this coordinate, It was operated geo-referencing of point clouds, verified accuracy between check point and geo-referenced point clouds. As a result, RMSE of check point shows that GPS surveying is 6.9~8.0cm.

  • PDF

The Analysis of Accuracy in According to the Registration Methods of Terrestrial LiDAR Data for Indoor Spatial Modeling (건물 실내 공간 모델링을 위한 지상라이다 영상 정합 방법에 따른 정확도 분석)

  • Kim, Hyung-Tae;Pyeon, Mu-Wook;Park, Jae-Sun;Kang, Min-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.333-340
    • /
    • 2008
  • For the indoor spatial modeling by terrestrial LiDAR and the analyzing its positional accuracy result, two terrestrial LiDARs which have different specification each other were used at test site. This paper shows disparity of accuracy between (1) the structural coordinate transformation by point cloud unit using control points and (2) the relative registration among all point cloud units then structural coordinate transformation in bulk, under condition of limited number of control points. As results, the latter had smaller size and distribution of errors than the former although different specifications and acquistion methods are used.

Comparative Analysis of Filtering Techniques for Vegetation Points Removal from Photogrammetric Point Clouds at the Stream Levee (하천 제방의 영상 점군에서 식생 점 제거 필터링 기법 비교 분석)

  • Park, Heeseong;Lee, Du Han
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.233-244
    • /
    • 2021
  • This study investigated the application of terrestrial light detection and ranging (LiDAR) to inspect the defects of the vegetated levee. The accuracy of vegetation filtering techniques was compared by applying filtering techniques on photogrammetric point clouds of a vegetated levee generated by terrestrial LiDAR. Representative 10 vegetation filters such as CIVE, ExG, ExGR, ExR, MExG, NGRDI, VEG, VVI, ATIN, and ISL were applied to point cloud data of the Imjin River levee. The accuracy order of the 10 techniques based on the results was ISL, ATIN, ExR, NGRDI, ExGR, ExG, MExG, VVI, VEG, and CIVE. Color filters show certain limitations in the classification of vegetation and ground and classify grass flower image as ground. Morphological filters show a high accuracy of the classification, but they classify rocks as vegetation. Overall, morphological filters are superior to color filters; however, they take 10 times more computation time. For the improvement of the vegetation removal, combined filters of color and morphology should be studied.

Movements Simulation of Debris Flow for Prediction of Mountain Disasters Risk Zone (산지재해 위험구간 예측을 위한 토석류 흐름 모의)

  • Chae Yeon Oh;Kye Won Jun;Bae Dong Kang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.71-78
    • /
    • 2022
  • Recently, mountain disasters such as landslides and debris flows have flowed along mountain streams and hit residential areas and roads, increasing damage. In this study, in order to reduce damage and analyze causes of mountain disasters, field surveys and Terrestrial LiDAR terrain analysis were conducted targeting debris flow areas, and debris flow flow processes were simulated using FLO-2D and RAMM models, which are numerical models of debris flows. In addition, the debris flow deposition area was calculated and compared and analyzed with the actual occurrence section. The sedimentation area of the debris flow generation section of the LiDAR scan data was estimated to be approximately 21,336 ㎡, and was analyzed to be 20,425 ㎡ in the FLO-2D simulation and 19,275 ㎡ in the case of the RAMMS model. The constructed topographical data can be used as basic data to secure the safety of disaster risk areas.

Indoor 3D Modeling Approach based on Terrestrial LiDAR (지상라이다기반 실내 3차원 모델 구축 방안)

  • Hong, Sungchul;Park, Il-Suk;Heo, Joon;Choi, Hyunsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5D
    • /
    • pp.527-532
    • /
    • 2012
  • Terrestrial LiDAR emerges as a main mapping technology for indoor 3D cadastre, cultural heritage conservation and, building management in that it provides fast, accurate, and reliable 3D data. In this paper, a new 3D modeling method consisting of segmentation stage and outline extraction stage is proposed to develop indoor 3D model from the terrestrial LiDAR. In the segmentation process, RANSAC and a refinement grid is used to identify points that belong to identical planar planes. In the outline tracing process, a tracing grid and a data conversion method are used to extract outlines of indoor 3D models. However, despite of an improvement of productivity, the proposed approach requires an optimization process to adjust parameters such as a threshold of the RANSAC and sizes of the refinement and outline extraction grids. Furthermore, it is required to model curvilinear and rounded shape of the indoor structures.

3D Modelling of Steep Rock Face by Terrestrial Scanning LiDAR (지상 Scanning LiDAR에 의한 암사면의 3차원 모델링)

  • Lee, Yong-Chang
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.93-96
    • /
    • 2007
  • LIDAR is a relatively new technological tool that can be used to accurately georeference terrain features, and also is becoming an important 3D mapping tool in GIS. In this study it is described the capabilities of terrestrial LIDAR that was used to build a 3D terrain model of extremely steep rock face, along with the useful data and examples of contributions terrestrial lidar has made to outcrop studies. For this, High-resolution terrestrial lidar acquisition, processing, interpretation are discussed and applied to mapping of geological surfaces in three dimensions. We expected that lidar is a tool with which we can improve our current field methods and quantify the observations geologists make.

  • PDF