• Title/Summary/Keyword: Terrain information

Search Result 752, Processing Time 0.022 seconds

A Study on Health Impact Assessment and Emissions Reduction System Using AERMOD (AERMOD를 활용한 건강위해성평가 및 배출저감제도에 관한 연구)

  • Seong-Su Park;Duk-Han Kim;Hong-Kwan Kim;Young-Woo Chon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.93-105
    • /
    • 2024
  • Purpose: This study aims to quantitatively determine the impact on nearby risidents by selecting the amount of chemicals emitted from the workplace among the substances subject to the chemical emission plan and predicting the concentration with the atmospheric diffusion program. Method: The selection of research materials considered half-life, toxicity, and the presence or absence of available monitoring station data. The areas discharged from the materials to be studied were selected as the areas to be studied, and four areas with floating populations were selected to evaluate health risks. Result: AERMOD was executed after conducting terrain and meteorological processing to obtain predicted concentrations. The health hazard assessment results indicated that only dichloromethane exceeded the threshold for children, while tetrachloroethylene and chloroform appeared at levels that cannot be ignored for both children and adults. Conclusion: Currently, in the domestic context, health hazard assessments are conducted based on the regulations outlined in the "Environmental Health Act" where if the hazard index exceeds a certain threshold, it is considered to pose a health risk. The anticipated expansion of the list of substances subject to the chemical discharge plan to 415 types by 2030 suggests the need for efficient management within workplaces. In instances where the hazard index surpasses the threshold in health hazard assessments, it is judged that effective chemical management can be achieved by prioritizing based on considerations of background concentration and predicted concentration through atmospheric dispersion modeling.

Development and Application of a Scenario Analysis System for CBRN Hazard Prediction (화생방 오염확산 시나리오 분석 시스템 구축 및 활용)

  • Byungheon Lee;Jiyun Seo;Hyunwoo Nam
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.3
    • /
    • pp.13-26
    • /
    • 2024
  • The CBRN(Chemical, Biological, Radiological, and Nuclear) hazard prediction model is a system that supports commanders in making better decisions by creating contamination distribution and damage prediction areas based on the weapons used, terrain, and weather information in the events of biochemical and radiological accidents. NBC_RAMS(Nuclear, Biological and Chemical Reporting And Modeling S/W System) developed by ADD (Agency for Defense Development) is used not only supporting for decision making plan for various military operations and exercises but also for post analyzing CBRN related events. With the NBC_RAMS's core engine, we introduced a CBR hazard assessment scenario analysis system that can generate contaminant distribution prediction results reflecting various CBR scenarios, and described how to apply it in specific purposes in terms of input information, meteorological data, land data with land coverage and DEM, and building data with pologon form. As a practical use case, a technology development case is addressed that tracks the origin location of contaminant source with artificial intelligence and a technology that selects the optimal location of a CBR detection sensor with score data by analyzing large amounts of data generated using the CBRN scenario analysis system. Through this system, it is possible to generate AI-specialized CBRN related to training and analysis data and support planning of operation and exercise by predicting battle field.

The PRISM-based Rainfall Mapping at an Enhanced Grid Cell Resolution in Complex Terrain (복잡지형 고해상도 격자망에서의 PRISM 기반 강수추정법)

  • Chung, U-Ran;Yun, Kyung-Dahm;Cho, Kyung-Sook;Yi, Jae-Hyun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.72-78
    • /
    • 2009
  • The demand for rainfall data in gridded digital formats has increased in recent years due to the close linkage between hydrological models and decision support systems using the geographic information system. One of the most widely used tools for digital rainfall mapping is the PRISM (parameter-elevation regressions on independent slopes model) which uses point data (rain gauge stations), a digital elevation model (DEM), and other spatial datasets to generate repeatable estimates of monthly and annual precipitation. In the PRISM, rain gauge stations are assigned with weights that account for other climatically important factors besides elevation, and aspects and the topographic exposure are simulated by dividing the terrain into topographic facets. The size of facet or grid cell resolution is determined by the density of rain gauge stations and a $5{\times}5km$ grid cell is considered as the lowest limit under the situation in Korea. The PRISM algorithms using a 270m DEM for South Korea were implemented in a script language environment (Python) and relevant weights for each 270m grid cell were derived from the monthly data from 432 official rain gauge stations. Weighted monthly precipitation data from at least 5 nearby stations for each grid cell were regressed to the elevation and the selected linear regression equations with the 270m DEM were used to generate a digital precipitation map of South Korea at 270m resolution. Among 1.25 million grid cells, precipitation estimates at 166 cells, where the measurements were made by the Korea Water Corporation rain gauge network, were extracted and the monthly estimation errors were evaluated. An average of 10% reduction in the root mean square error (RMSE) was found for any months with more than 100mm monthly precipitation compared to the RMSE associated with the original 5km PRISM estimates. This modified PRISM may be used for rainfall mapping in rainy season (May to September) at much higher spatial resolution than the original PRISM without losing the data accuracy.

Geo-surface Environmental Changes and Reclaimed Amount Prediction Using Remote Sensing and Geographic Information System in the Siwha Area (원격탐사와 지리정보시스템을 이용한 시화지구 일대의 지표환경변화와 토공량 예측연구)

  • Yang, So-Yeon;Song, Moo-Young;Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.161-176
    • /
    • 1999
  • The objectives of this study are to analyze the changes of geo-surface topography in the Siwha embankment and the Ahsan city area by the image processing of Landsat Thematic Mapper data, and to estimate the reclaimed amount of the exposed tidal flat in the Siwha area using the GIS. False color composite, Tasseled cap, NVDI(normalized difference vegetation index), and supervised classification techniques were used to analyze the distribution of sediments and the aspect of topographical variations caused by artificial human actions. The total amount of the exposed tidal flat was estimated on the basis of the database snch as aerial photography, hydrographic chart, geological map, and scheme drawing in the Siwha area. The possible excavation regions for a seawall were predicted analyzing the supervised classification image of Landsat TM data. Tasseled cap images were used to observe the distribution of sediments. The difference of the NDVI images between spring and summer seasons indicates that deciduous and coniferous forests were distributed over the whole areas. The total fill-volume of the exposed Siwha tidal flat and the fill-volume of the construction planning seawall were calculated as $581,485,354\textrm{m}^3{\;}and{\;}3,387,360\textrm{m}^3$, respectively, from the digital terrain analysis. Daebu Island, Sunkam Island, and the part of Songsan-myeon were chosen as the cut area to make the seawall, and their cut-volumes were estimated as $5,229,576\textrm{m}^3,{\;}79,227,072\textrm{m}^3,{\;}and{\;}47,026,008\textrm{m}^3$, respectively. Therefore, the cut-volume of Daebu Island alone among three areas was sufficient to make the seawall.

  • PDF

A Placeness and Identification on the Place Names of Geomorphological Landscape in Jukdo, Yangyang (양양 죽도의 장소성과 지형경관의 지명 고찰 및 비정)

  • Rho, Jae-hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.37-48
    • /
    • 2019
  • This study, which starting from Yangyang Jukdo's topography formation and questioning revealed in landscape guide and landscape commentary board, is to sort out the characteristics of Jukdo natural landscape through literature research, field observation research and stakeholder interview as part of the proper recognition of Jokdo landscape and search for landscape resources, and pursued a review of nominations and criticism. The results of this study are summarized as follows. Yangyang Jukdo is an island named because it was full of blue bamboo. From before the first half of the 14th Century. to the middle of the 18th Century., there was a Gwanlan-pavilion to see the sea and the bamboo in the west. The time when the original island, the Jukdo, have been a land-tied island connected with the land by the tombolo formed by the erosion of the sand. It is located at the end of the 14th Century. and before the middle of the 18th Century. In Jukdo, colorful weathered terrains, coastal terrain, and structural terrain formed by long-time weathering are found. Among them, the type of weathering, the tafoni style and the gnamma style are the scenic landscapes with the key stories of legend and poetry that are brought to Jukdo. In addition, there are seven kinds of letters caved in the rocks in Jukdo. The rocks found on the coast, basketball cannons, shrines, and sutras are seen as shrouds based on a Taoist hermit motifs and style. In addition, it can be interred from the photography of "jeongssisejeog" that the souvenir of Jukdo was the family of Chogyejeong of mid 18th Century. In terms of observational geography and poetry, Jukdo has been handed down a great deal of missionary color with key motifs such as 'Jukdo-seongoo', 'Jukdo-Dolgooyoo', or 'Stone mortar of Taoist hermit' It is proved that the pearl which is called 'The stone of the Taoist hermit' is a porthole formed in a separate space rather than the topography of the geomorphology in terms of shape, size and function. Currently named Shun-tang is a product of the ridiculous 'naming' of interest. The present landscape guide and commentary is not only incompatible with the place of Jukdo, but also does not match the traditional cultural landscape. Future scenery information such as guide signs and commentary boards should be improved in the direction of positively highlighting the stories and motifs related to the present that are present in order to enhance the landscape identity of Yangyang Jukdo.

Improvement of Mid-Wave Infrared Image Visibility Using Edge Information of KOMPSAT-3A Panchromatic Image (KOMPSAT-3A 전정색 영상의 윤곽 정보를 이용한 중적외선 영상 시인성 개선)

  • Jinmin Lee;Taeheon Kim;Hanul Kim;Hongtak Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1283-1297
    • /
    • 2023
  • Mid-wave infrared (MWIR) imagery, due to its ability to capture the temperature of land cover and objects, serves as a crucial data source in various fields including environmental monitoring and defense. The KOMPSAT-3A satellite acquires MWIR imagery with high spatial resolution compared to other satellites. However, the limited spatial resolution of MWIR imagery, in comparison to electro-optical (EO) imagery, constrains the optimal utilization of the KOMPSAT-3A data. This study aims to create a highly visible MWIR fusion image by leveraging the edge information from the KOMPSAT-3A panchromatic (PAN) image. Preprocessing is implemented to mitigate the relative geometric errors between the PAN and MWIR images. Subsequently, we employ a pre-trained pixel difference network (PiDiNet), a deep learning-based edge information extraction technique, to extract the boundaries of objects from the preprocessed PAN images. The MWIR fusion imagery is then generated by emphasizing the brightness value corresponding to the edge information of the PAN image. To evaluate the proposed method, the MWIR fusion images were generated in three different sites. As a result, the boundaries of terrain and objects in the MWIR fusion images were emphasized to provide detailed thermal information of the interest area. Especially, the MWIR fusion image provided the thermal information of objects such as airplanes and ships which are hard to detect in the original MWIR images. This study demonstrated that the proposed method could generate a single image that combines visible details from an EO image and thermal information from an MWIR image, which contributes to increasing the usage of MWIR imagery.

Comparison of Three Kinds of Methods on Estimation of Forest Carbon Stocks Distribution Using National Forest Inventory DB and Forest Type Map (국가산림자원조사 DB와 임상도를 이용한 산림탄소저장량 공간분포 추정방법 비교)

  • Kim, Kyoung-Min;Roh, Young-Hee;Kim, Eun-Sook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.69-85
    • /
    • 2014
  • Carbon stocks of NFI plots can be accurately estimated using field survey information. However, an accurate estimation of carbon stocks in other unsurveyed sites is very difficult. In order to fill this gap, various spatial information can be used as an ancillary data. In South Korea, there is the 1:5,000 forest type map that was produced by digital air-photo interpretation and field survey. Because this map contains very detailed forest information, it can be used as the high-quality spatial data for estimating carbon stocks. In this study, we compared three upscaling methods based on the 1:5,000 forest type map and 5th national forest inventory data. Map algebra(method 1), RK(Regression Kriging)(method 2), and GWR(Geographically Weighted Regression)(method 3) were applied to estimate forest carbon stock in Chungcheong-nam Do and Daejeon metropolitan city. The range of carbon stocks from method 2(1.39~138.80 tonC/ha) and method 3(1.28~149.98 tonC/ha) were more similar to that of previous method(1.56~156.40 tonC/ha) than that of method 1(0.00~93.37 tonC/ha). This result shows that RK and GWR considering spatial autocorrelation can show spatial heterogeneity of carbon stocks. We carried out paired t-test for carbon stock data using 186 sample points to assess estimation accuracy. As a result, the average carbon stocks of method 2 and field survey method were not significantly different at p=0.05 using paired t-test. And the result of method 2 showed the lowest RMSE. Therefore regression kriging method is useful to consider spatial variations of carbon stocks distribution in rugged terrain and complex forest stand.

Design of Transportation Safety system with GPS Precise Point Positioning (고정밀 GPS 항법정보 기반 선박통항안전시스템 설계)

  • Song, Se-Phil;Cho, Deuk-Jae;Park, Sul-Gee;Hong, Chul-Eui;Park, Sang-Hyun;Suh, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.71-77
    • /
    • 2013
  • Most of the maritime accidents are the crash that occurred by complex coastal terrain, increased maritime traffic and frequent weather changes. Therefore, transportation safety is exactly determined using accurate environmental informations, but if informations are inaccurate or insufficient, accident risk can be increased. Therefore, ship need the system that can accurately generate transportation safety information. This paper proposes the transportation safety system and performance evaluation in the real environment. The proposed system includes database of environment informations and navigation algorithm using PPP method to estimate the accurate ship position. Therefore, this system can accurately calculate distance or freeboard between ship with other factors. Futhermore, when weather is deteriorated, crew can sail with database based 3-D monitoring module in the transportation safety system. To verify the function and performance, data of Kyungin ARA waterway and ferry is used to evaluation.

Estimation of Flows and Pollutant Loads from GIS Analysis using Cell-based Geospatial and Georgraphic Information Data (격자기반의 지형 및 지리정보자료와 GIS분석기법을 이용한 유역의 유출량 및 오염부하량 추정)

  • Cho, Jae-Myoung;Lee, Mi-Ran;Yun, Hong-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.381-392
    • /
    • 2011
  • Pollutant loads calculated with unit factor method can not identity seasonal variations of pollutant inputs. Estimation of pollutant loads considering rainfall runoff can overcome these limits. SCS curve number method was applied to estimate runoff of each event of Koeup watershed of Koheung estuary lake. SCS curve numbers were calculated based upon land use, soil types of the catchment using GIS. Point and nonpoint source pollutant loads were summed up for total loads estimation. Those from nonpoint source were estimated by multiplying the calculated runoff and expected mean concentrations (EMC) presented by the Minister of Environment of Korea. DEM can present three dimensional views of a terrain, identity stream networks and flow accumulation. Furthermore, it can examine accumulated pollutant loads of specific point of a catchment. Therefore, cell based pollutant load estimation was attempted using DEM. ArcView was utilized to collect, store and manipulate spatial and attribute data of pollutant sources and features of the catchment. Cell-based DEM which was established by the GRID module of ARC/INFO was employed to estimate flows and pollutant loads.

Principles and Applications of Multi-Level H2O/CO2 Profile Measurement System (다중 수증기/이산화탄소 프로파일 관측 시스템의 원리와 활용)

  • Yoo, Jae-Ill;Lee, Dong-Ho;Hong, Jin-Kyu;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.27-38
    • /
    • 2009
  • The multi-level profile system is designed to measure the vertical profile of $H_2O$ and $CO_2$ concentrations in the surface layer to estimate the storage effects within the plant canopy. It is suitable for long-term experiments and can be used also in advection studies for estimating the spatial variability and vertical gradients in concentration. It enables the user to calculate vertical fluxes of water vapor, $CO_2$ and other trace gases using the surface layer similarity theory and to infer their sources or sinks. The profile system described in this report includes the following components: sampling system, calibration and flow control system, closed path infrared gas analyzer(IRGA), vacuum pump and a datalogger. The sampling system draws air from 8 inlets into the IRGA in a sequence, so that for 80 seconds air from all levels is measured. The calibration system, controlled by the datalogger, compensates for any deviations in the calibration of the IRGA by using gas sources with known concentrations. The datalogger switches the corresponding valves, measures the linearized voltages from the IRGA, calculates the concentrations for each monitoring level, performs statistical analysis and stores the final data. All critical components are mounted in an environmental enclosure and can operate with little maintenance over long periods of time. This report, as a practical manual, is designed to provide helpful information for those who are interested in using profile system to measure evapotranspiration and net ecosystem exchanges in complex terrain.