• Title/Summary/Keyword: Ternary blended cement

Search Result 62, Processing Time 0.027 seconds

Fundamental study on the strength and durability of ternary blended cement concrete (3성분계 시멘트콘크리트의 강도 및 내구특성에 대한 기초적 연구)

  • Lee, Seung-Tae;Lee, Seung-Heun;Kim, Dae-Seong;Kim, Do-Gyun;Seo, Chang-Won;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.343-344
    • /
    • 2009
  • Compressive strength and chloride ions permeability measurements of ternary blended cement concretes incorporating ground granulated blast-furnace slag and fly ash were performed From a result of this study, it was found that there may be not a linear relationship between compressive strength and durability of ternary blended cement concretes.

  • PDF

Physicochemical properties and autogenous healing performance of ternary blended binders composed of OPC-BFS-CSA clinker

  • H.N. Yoon;Joonho Seo;Naru Kim;H.M. Son;H.K. Lee
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.11-22
    • /
    • 2023
  • Autogenous healing of concrete can be helpful in structural maintenance by healing cracks using a healing material created by the precipitation of calcite and by the hydration of unhydrated binder around the cracks. Against this backdrop, this study investigated the physicochemical properties and autogenous healing performance of ternary blended binder composed of ordinary Portland cement (OPC), blast furnace slag (BFS), and calcium sulfoaluminate (CSA) clinker. Ternary blended binders with various contents of OPC-BFS-CSA clinker were prepared, and their physicochemical properties and autogenous healing performances were examined using various analytical techniques and visually observed using a microscope. The obtained results indicated that increase in the BFS content accompanied the increased the amount of unreacted BFS even after 28 days of curing and had a positive effect on the autogenous healing performance due to its latent hydration. However, replacing the CSA clinker did not increase the autogenous healing performance owing to an insufficient sulfate source for the formation of ettringite. The main precipitates around the cracks were calcite, C-S-H. Other hydration products such as portlandite, monosulfate, and ettringite, which were not found in the Raman and scanning electron microscope analyses.

Sulfate and Freeze-thaw Resistance Characteristic of Multi-component Cement Concrete Considering Marine Environment (해양환경을 고려한 다성분계 시멘트 콘크리트의 황산염 및 동결융해 저항 특성)

  • Kim, Myung-Sik;Beak, Dong-Il;Kang, Jun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.26-32
    • /
    • 2012
  • Recently, concrete using multicomponent blended cement has been required to increase the freeze-thaw and sulfate resistances of concrete structures exposed to a marine environment. Thus, the purpose of this study was to propose the use of concrete containing multicomponent blended cement as one of the alternatives for concrete structures exposed to a marine environment. For this purpose, batches of concrete containing ordinary portland cement (OPC), binary blended cement (OPC-G, G: ground granulated blast slag), ternary blended cement (OPC-GF, F: fly ash), and quaternary blended cement (OPC-GFM, M: mata-kaolin) were made using a water-binder ratio of 50%. Then, the durability levels, including thesulfate and freeze-thaw resistances, were estimated for concrete samples containing OPC, OPC-G, OPC-GF, and OPC-GFM. It was observed from the tests that the durability levels of the concrete samples containing OPC-G and OPC-GF were found to be much better than that of the concrete containing OPC. The optimum mixing proportions were a40% replacement ratio of ground granulated blast slag for the binary blended cement and a30% replacement ratio of ground granulated blast slag and 10% fly ash for the ternary blended cement.

A Study on the Hydration Characteristics and Fundamental Properties of Ternary Blended Cement Using Ferronickel Slag (페로니켈슬래그 및 고로슬래그 미분말을 결합재로 사용한 삼성분계 시멘트의 수화 특성 및 기초물성에 관한 연구)

  • Cho, Won-Jung;Kim, Han-Sol;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.39-48
    • /
    • 2020
  • The present study investigates the chemical reaction and performance of ternary blended binders by mixing ferronickel slag. Cement was replaced using ground granulated blast furnace slag and ferronickel slag, combined up to 50% of the replacement rate. The blended cements were tested by setting times, length change, compressive strength at 1, 3, 7, 28 days. X-ray diffraction and scanning electron microscope were conducted for detecting hydration products while the MIP and microhydation heat were used for examining morphological characteristics. The results showed that by adding ferronickel slag, Pozzolanic reaction occurred, forming a dense pore structure and the effect of reducing hydration heat and dry shrinkage was also found. The compressive strength at 28 days was lower than that of 100% OPC control specimen (OSP0), but ternary blended cements showed no significant difference compared to binary blended (OSP50). If the optimal mix is derived later and used for the purpose, the potential for use as a cement binder is expected.

Mechanical properties and adiabatic temperature rise of low heat concrete using ternary blended cement

  • Kim, Si-Jun;Yang, Keun-Hyeok;Lee, Kyung-Ho;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.271-280
    • /
    • 2016
  • This study examined the mechanical properties and adiabatic temperature rise of low-heat concrete developed based on ternary blended cement using ASTM type IV (LHC) cement, ground fly ash (GFA) and limestone powder (LSP). To enhance reactivity of fly ash, especially at an early age, the grassy membrane was scratched through the additional vibrator milling process. The targeted 28-day strength of concrete was selected to be 42 MPa for application to high-strength mass concrete including nuclear plant structures. The concrete mixes prepared were cured under the isothermal conditions of $5^{\circ}C$, $20^{\circ}C$, and $40^{\circ}C$. Most concrete specimens gained a relatively high strength exceeding 10 MPa at an early age, achieving the targeted 28-day strength. All concrete specimens had higher moduli of elasticity and rupture than the predictions using ACI 318-11 equations, regardless of the curing temperature. The peak temperature rise and the ascending rate of the adiabatic temperature curve measured from the prepared concrete mixes were lower by 12% and 32%, respectively, in average than those of the control specimen made using 80% ordinary Portland cement and 20% conventional fly ash.

An Artificial Neural Networks Model for Predicting Permeability Properties of Nano Silica-Rice Husk Ash Ternary Blended Concrete

  • Najigivi, Alireza;Khaloo, Alireza;zad, Azam Iraji;Rashid, Suraya Abdul
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.225-238
    • /
    • 2013
  • In this study, a two-layer feed-forward neural network was constructed and applied to determine a mapping associating mix design and testing factors of cement-nano silica (NS)-rice husk ash ternary blended concrete samples with their performance in conductance to the water absorption properties. To generate data for the neural network model (NNM), a total of 174 field cores from 58 different mixes at three ages were tested in the laboratory for each of percentage, velocity and coefficient of water absorption and mix volumetric properties. The significant factors (six items) that affect the permeability properties of ternary blended concrete were identified by experimental studies which were: (1) percentage of cement; (2) content of rice husk ash; (3) percentage of 15 nm of $SiO_2$ particles; (4) content of NS particles with average size of 80 nm; (5) effect of curing medium and (6) curing time. The mentioned significant factors were then used to define the domain of a neural network which was trained based on the Levenberg-Marquardt back propagation algorithm using Matlab software. Excellent agreement was observed between simulation and laboratory data. It is believed that the novel developed NNM with three outputs will be a useful tool in the study of the permeability properties of ternary blended concrete and its maintenance.

The Properties of Mortar Mixtures Blended with Natural, Crushed, and Recycled Fine Aggregates for Building Construction Materials

  • Yu, Myoung-Youl;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.1
    • /
    • pp.73-86
    • /
    • 2012
  • In this research, the possible applicability of mixture blended with natural, crushed, and recycled fine aggregate are discussed. The fresh and hardened properties of mortar using blended fine aggregates are monitored depending on various blending ratio of fine aggregates. Newly developed ternary diagram was also utilized for better interpretation of the data. It was found that air content increased and unit weight decreased as recycled fine aggregate content increased. With moisture type processing of recycled fine aggregate, the mortar flow was not negatively affected by increase in the recycled fine aggregate content. The ternary diagram is found to be an effective graphical presentation tool that can be used for the quality evaluation of mortar using blended fine aggregate.

Evaluation of Thermal Characteristics in Association with Cement Types in Massive Concrete Structure (매스콘크리트 구조물에서의 시멘트 종류별 수화발열 특성 평가)

  • 김상철;강석화;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.3-12
    • /
    • 1999
  • The larger, loftier and more highly strengthened the recent structures become, the greater attention is paid to the problem of thermal crack occurrence associate with hydration heat. As one of methods to solve the problem, a care has been taken to the improvement of construction such as the application of pre-cooling or pipe-cooling, adjustment of concrete block size, concrete placement timing, joint arrangement and so on. But it is expected that a proper selection of cement shall additionally contribute to the control of thermal cracks. In this study, thus, we selected 4 types of cements such as Type V for anti-sulphate, blast furnace cements (slag content of 45% and 65% respectively)and ternary blended low heat cement, and carried out mock-up tests. In every assigned time, temperatures and thermal stresses were measured and calculated from raw data. As a result of measurement, it was found that the magnitude of hydration heat is in order of blast furnace slag cement. Type V and ternary blended low heat cement. Results of thermal stresses were same as the order of temperature. In addition, thermal stresses calculated from the data of strain gauges showed almost similar to those measured from effective stress gauges only when strain values were adjusted properly in accordance with initial time of stress appearance. Theoretical results agreed well with the measured values comparatively, but showed slight differences. It is inferred that these differences shall be reduced if more tests capable of evaluating thermal characteristics of concrete are carried out.

Effect of Relative Levels of Mineral Admixtures on Strength of Concrete with Ternary Cement Blend

  • Mala, Kanchan;Mullick, A.K.;Jain, K.K.;Singh, P.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.239-249
    • /
    • 2013
  • In the present scenario to fulfill the demands of sustainable construction, concrete made with multi-blended cement system of OPC and different mineral admixtures, is the judicious choice for the construction industry. Silica fume (SF) and fly ash (FA) are the most commonly used mineral admixtures in ternary blend cement systems. Synergy between the contributions of both on the mechanical properties of the concrete is an important factor. This study reports the effect of replacement of OPC by fly ash (20, 30, 40 and 50 % replacement of OPC) and/or silica fume (7 and 10 %) on the mechanical properties of concrete like compressive strength and split tensile strength, with three different w/b ratio of 0.3, 0.4 and 0.45. The results indicate that, as the total replacement level of OPC in concrete using ternary blend of OPC + FA + SF increases, the strength with respect to control mix increases up to certain replacement level and thereafter decreases. If the cement content of control mixes at each w/b ratio is kept constant, then as w/b ratio decreases, higher percentage of OPC can be replaced with FA + SF to get 28 days strength comparable to the control mix. A new method was proposed to find the efficiency factor of SF and FA individually in ternary blend cement system, based on principle of modified Bolomey's equation for predicting compressive strength of concrete using binary blend cement system. Efficiency factor for SF and FA were always higher in ternary blend cement system than their respective binary blend cement system. Split tensile strength of concrete using binary and ternary cement system were higher than OPC for a given compressive strength level.

Fundamental Characteristics the Concrete According to Mixing Methods and Unit Water Content of Ternary Blended Cement (3성분계 시멘트의 단위수량 및 혼합방식에 따른 콘크리트의 기초특성)

  • Lee, Il-Sun;Hong, Seak-Min;Baek, Dae-Hyun;Kim, ki-hoon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.133-136
    • /
    • 2009
  • This study analyzes the mixing and basic characteristics of concrete according to the unit quantity and mixing method of ternary blended cement and the results of this study can be summarized as follows. In the case of the premixed cement (hereafter referred as POBF) of POBF135, it satisfies the target level of fluidity and air content in which it shows relatively small bleedings even though it represents the latest initial and final setting. Also, although the POBF135 represents small initial strength, it shows an increase in the strength according to the increase in aging. In addition, it shows the lowest temperature in the POBF135. As a result, it can be seen that the POBF135 indicates the most optimal mixing subject to considering the aspect of fluidity, compressive strength, and heat of hydration in general figures.

  • PDF