• Title/Summary/Keyword: Tensorflow

Search Result 115, Processing Time 0.024 seconds

Comparative Evaluation of 18F-FDG Brain PET/CT AI Images Obtained Using Generative Adversarial Network (생성적 적대 신경망(Generative Adversarial Network)을 이용하여 획득한 18F-FDG Brain PET/CT 인공지능 영상의 비교평가)

  • Kim, Jong-Wan;Kim, Jung-Yul;Lim, Han-sang;Kim, Jae-sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.24 no.1
    • /
    • pp.15-19
    • /
    • 2020
  • Purpose Generative Adversarial Network(GAN) is one of deep learning technologies. This is a way to create a real fake image after learning the real image. In this study, after acquiring artificial intelligence images through GAN, We were compared and evaluated with real scan time images. We want to see if these technologies are potentially useful. Materials and Methods 30 patients who underwent 18F-FDG Brain PET/CT scanning at Severance Hospital, were acquired in 15-minute List mode and reconstructed into 1,2,3,4,5 and 15minute images, respectively. 25 out of 30 patients were used as learning images for learning of GAN and 5 patients used as verification images for confirming the learning model. The program was implemented using the Python and Tensorflow frameworks. After learning using the Pix2Pix model of GAN technology, this learning model generated artificial intelligence images. The artificial intelligence image generated in this way were evaluated as Mean Square Error(MSE), Peak Signal to Noise Ratio(PSNR), and Structural Similarity Index(SSIM) with real scan time image. Results The trained model was evaluated with the verification image. As a result, The 15-minute image created by the 5-minute image rather than 1-minute after the start of the scan showed a smaller MSE, and the PSNR and SSIM increased. Conclusion Through this study, it was confirmed that AI imaging technology is applicable. In the future, if these artificial intelligence imaging technologies are applied to nuclear medicine imaging, it will be possible to acquire images even with a short scan time, which can be expected to reduce artifacts caused by patient movement and increase the efficiency of the scanning room.

Detecting Adversarial Example Using Ensemble Method on Deep Neural Network (딥뉴럴네트워크에서의 적대적 샘플에 관한 앙상블 방어 연구)

  • Kwon, Hyun;Yoon, Joonhyeok;Kim, Junseob;Park, Sangjun;Kim, Yongchul
    • Convergence Security Journal
    • /
    • v.21 no.2
    • /
    • pp.57-66
    • /
    • 2021
  • Deep neural networks (DNNs) provide excellent performance for image, speech, and pattern recognition. However, DNNs sometimes misrecognize certain adversarial examples. An adversarial example is a sample that adds optimized noise to the original data, which makes the DNN erroneously misclassified, although there is nothing wrong with the human eye. Therefore studies on defense against adversarial example attacks are required. In this paper, we have experimentally analyzed the success rate of detection for adversarial examples by adjusting various parameters. The performance of the ensemble defense method was analyzed using fast gradient sign method, DeepFool method, Carlini & Wanger method, which are adversarial example attack methods. Moreover, we used MNIST as experimental data and Tensorflow as a machine learning library. As an experimental method, we carried out performance analysis based on three adversarial example attack methods, threshold, number of models, and random noise. As a result, when there were 7 models and a threshold of 1, the detection rate for adversarial example is 98.3%, and the accuracy of 99.2% of the original sample is maintained.

A Comparative Study of Machine Learning Algorithms Based on Tensorflow for Data Prediction (데이터 예측을 위한 텐서플로우 기반 기계학습 알고리즘 비교 연구)

  • Abbas, Qalab E.;Jang, Sung-Bong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.3
    • /
    • pp.71-80
    • /
    • 2021
  • The selection of an appropriate neural network algorithm is an important step for accurate data prediction in machine learning. Many algorithms based on basic artificial neural networks have been devised to efficiently predict future data. These networks include deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and gated recurrent unit (GRU) neural networks. Developers face difficulties when choosing among these networks because sufficient information on their performance is unavailable. To alleviate this difficulty, we evaluated the performance of each algorithm by comparing their errors and processing times. Each neural network model was trained using a tax dataset, and the trained model was used for data prediction to compare accuracies among the various algorithms. Furthermore, the effects of activation functions and various optimizers on the performance of the models were analyzed The experimental results show that the GRU and LSTM algorithms yields the lowest prediction error with an average RMSE of 0.12 and an average R2 score of 0.78 and 0.75 respectively, and the basic DNN model achieves the lowest processing time but highest average RMSE of 0.163. Furthermore, the Adam optimizer yields the best performance (with DNN, GRU, and LSTM) in terms of error and the worst performance in terms of processing time. The findings of this study are thus expected to be useful for scientists and developers.

A Deep Learning Performance Comparison of R and Tensorflow (R과 텐서플로우 딥러닝 성능 비교)

  • Sung-Bong Jang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.487-494
    • /
    • 2023
  • In this study, performance comparison was performed on R and TensorFlow, which are free deep learning tools. In the experiment, six types of deep neural networks were built using each tool, and the neural networks were trained using the 10-year Korean temperature dataset. The number of nodes in the input layer of the constructed neural network was set to 10, the number of output layers was set to 5, and the hidden layer was set to 5, 10, and 20 to conduct experiments. The dataset includes 3600 temperature data collected from Gangnam-gu, Seoul from March 1, 2013 to March 29, 2023. For performance comparison, the future temperature was predicted for 5 days using the trained neural network, and the root mean square error (RMSE) value was measured using the predicted value and the actual value. Experiment results shows that when there was one hidden layer, the learning error of R was 0.04731176, and TensorFlow was measured at 0.06677193, and when there were two hidden layers, R was measured at 0.04782134 and TensorFlow was measured at 0.05799060. Overall, R was measured to have better performance. We tried to solve the difficulties in tool selection by providing quantitative performance information on the two tools to users who are new to machine learning.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.