• Title/Summary/Keyword: Tension-Softening

Search Result 106, Processing Time 0.023 seconds

Density Anomalies of Generalized van der Waals Fluid (일반화된 van der Waals 유체의 밀도 비이상성)

  • Yeo, Sang-Do;Debenedetti, Pablo G.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.809-812
    • /
    • 1996
  • Generalized van der Waals equation of state combined with the core-softening theory and temperature dependent repulsive and attractive terms exhibit the anomalous thermal expansion, i.e. density anomaly. Density maxima occur at both positive and negative pressure when the hard-core diameter decreases with increasing temperature, $db_r/dT_r<0$, and at negative pressure when the repulsive force increases with increasing temperature, $da_r/dT_r>0$.

  • PDF

Numerical simulation of reinforced concrete nuclear containment under extreme loads

  • Tamayo, Jorge Luis Palomino;Awruch, Armando Miguel
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.799-823
    • /
    • 2016
  • A finite element model for the non-linear dynamic analysis of a reinforced concrete (RC) containment shell of a nuclear power plant subjected to extreme loads such as impact and earthquake is presented in this work. The impact is modeled by using an uncoupled approach in which a load function is applied at the impact zone. The earthquake load is modeled by prescribing ground accelerations at the base of the structure. The nuclear containment is discretized spatially by using 20-node brick finite elements. The concrete in compression is modeled by using a modified $Dr{\ddot{u}}cker$-Prager elasto-plastic constitutive law where strain rate effects are considered. Cracking of concrete is modeled by using a smeared cracking approach where the tension-stiffening effect is included via a strain-softening rule. A model based on fracture mechanics, using the concept of constant fracture energy release, is used to relate the strain softening effect to the element size in order to guaranty mesh independency in the numerical prediction. The reinforcing bars are represented by incorporated membrane elements with a von Mises elasto-plastic law. Two benchmarks are used to verify the numerical implementation of the present model. Results are presented graphically in terms of displacement histories and cracking patterns. Finally, the influence of the shear transfer model used for cracked concrete as well as the effect due to a base slab incorporation in the numerical modeling are analyzed.

Seismic performance of reinforced engineered cementitious composite shear walls

  • Li, Mo;Luu, Hieu C.;Wu, Chang;Mo, Y.L.;Hsu, Thomas T.C.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.691-704
    • /
    • 2014
  • Reinforced concrete (RC) shear walls are commonly used for building structures to resist seismic loading. While the RC shear walls can have a high load-carrying capacity, they tend to fail in a brittle mode under shear, accompanied by forming large diagonal cracks and bond splitting between concrete and steel reinforcement. Improving seismic performance of shear walls has remained a challenge for researchers all over the world. Engineered Cementitious Composite (ECC), featuring incredible ductility under tension, can be a promising material to replace concrete in shear walls with improved performance. Currently, the application of ECC to large structures is limited due to the lack of the proper constitutive models especially under shear. In this paper, a new Cyclic Softening Membrane Model for reinforced ECC is proposed. The model was built upon the Cyclic Softening Membrane Model for reinforced concrete by (Hsu and Mo 2010). The model was then implemented in the OpenSees program to perform analysis on several cases of shear walls under seismic loading. The seismic response of reinforced ECC compared with RC shear walls under monotonic and cyclic loading, their difference in pinching effect and energy dissipation capacity were studied. The modeling results revealed that reinforced ECC shear walls can have superior seismic performance to traditional RC shear walls.

The Propagation Behavior of the Fatigue Crack of the Welded Structural Steel (용접(鎔接)이음한 구조용강(構造用鋼)의 피노귀열진전거동(疲勞龜裂進展擧動))

  • Jung, Young-Hwa;Kim, Ik-Gyeom;Lee, Hyung-Koon;Jung, Jin Suck
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.117-124
    • /
    • 1998
  • In recently, according to increase the construction rate of steel bridge, it is necessary to develop the high strength, high toughness steel. Thus, this study show to evaluate the fatigue characteristic of SWS 570 B first used within a country. With the weld-joined compact tension specimens compared with each other, that is, transverse and lengthwise about the crack propagation, high and low in the input heat level, the fatigue test were performed. The log-log curves between the fatigue crack propagation rate da/dN and the transition range of the stress intensity factor ${\Delta}K$ ahead the crack tip were drawed, with these data. By using this curve, we obtained C and m which is material constant from Paris-Erdogan power law. The obtained results from this study indicate that fatigue crack growth rate of SWS 570 B is not influenced by softening effect which occurs in the HAZ(heat-affected zone) when high and low heat input weld is carried out. Softening effects, which affect fatigue properties, are shown that it is not affected to the fatigue growth rates significantly.

  • PDF

High temperature rupture lifetime of 304 stainless steel under multiaxial stress states (다축응력상태에서의 304 스테인리스강의 고온 파괴수명에 관한 연구)

  • Kim, Ho-Kyung;Chung, Kang;Chung, Chin-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.595-602
    • /
    • 1998
  • Specimens of 304 stainless steel were tested to failure at elevated temperatures under multiaxial stress states, uniaxial tension using smooth bar specimens, biaxial shearing using double shear bar specimens, and triaxial tension using notched bar specimens. Rupture times are compared for uniaxial, biaxial, and triaxial stress states with respect to the maximum principal stress, the von Mises effective stress, and the principal facet stress. The results indicate that the principal facet stress gives the best correlation for the material investigated, and this parameter can predict creep life data under multiaxial stress states with rupture data obtained with specimens under uniaxial stresses. The results also suggest that grain boundary cavitation, coupled with localized deformation processes such as grain boudary sliding, controls the lifetimes of the specimens.

COMPUTATIONAL STUDY OF GLASS FIBER DRAWING PROCESS IN A DRAW FURNACE OF OPTICAL FIBER MASS MANUFACTURING SYSTEM (광섬유 대량생산용 인출퍼니스 내 유리섬유 인출공정의 전산해석)

  • Kim, K.;Kwak, H.S.;Kim, D.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.69-73
    • /
    • 2013
  • Mass manufacturing of optical fiber includes the process of very thin glass fiber drawing by heating and softening the high purity silica preform and applying the draw tension on the softened tip of preform neck-down profile in a draw furnace. In this computational study, this process is numerically modeled with simplified geometry of the draw furnace which is comprised of essential parts such as concentric graphite heater, muffle tube, and insulation surrounding the heater. The iterative computational scheme is employed between one-dimensional model of neck-down profile prediction and two-dimensional axisymmetric thermo-fluid CFD computation of radiative heating and working gas convection. The computational results show the experimentally observed neck-down profile in heated section of preform, while yielding the reasonable values of draw tension and heater wattage. Also, this study analyzes and discusses the effects of heating conditions such as heater length and temperature on several important aspects of glass fiber drawing process.

Progressive Fracture Analysis of Concrete by Boundary Element Method and its Stabilizing Technique (경계요소법에 의한 콘크리트의 파괴진행해석 및 안정화 기법)

  • 송하원;전재홍
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.205-212
    • /
    • 1996
  • This paper presents progressive fracture analysis of concrete using boundary element method and its stabilizing technique. To determine ultimate strength and to predict nonlinear behavior of concrete during progressive crack growth, the modelling of fracture process zone is done based on Dugdale-Barenblatt model with linear tension-softening curve. We regulate displacement and traction boundary integral equation of solids including crack boundary and analyze progressive fracture of concrete beam and compact tension specimen. Also a numerical technique which considers the growth of stress-free crack of concrete during the analysis and removes snapback of postpeak behavior is proposed.

High-Temperature Rupture of 5083-Al Alloy under Multiaxial Stress States

  • Kim Ho-Kyung;Chun Duk-Kyu;Kim Sung- Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1432-1440
    • /
    • 2005
  • High-temperature rupture behavior of 5083-Al alloy was tested for failure at 548K under multiaxial stress conditions: uniaxial tension using smooth bar specimens, biaxial shearing using double shear bar specimens, and triaxial tension using notched bar specimens. Rupture times were compared for uniaxial, biaxial, and triaxial stress conditions with respect to the maximum principal stress, the von Mises effective stress, and the principal facet stress. The results indicate that the von Mises effective and principal facet stresses give good correlation for the material investigated, and these parameters can predict creep life data under the multiaxial stress states with the rupture data obtained from specimens under the uniaxial stress. The results suggest that the creep rupture of this alloy under the testing condition is controlled by cavitation coupled with highly localized deformation process, such as grain boundary sliding. It is also conceivable that strain softening controls the highly localized deformation modes which result in cavitation damage in controlling rupture time of this alloy.

Formability Evaluation of Advanced High-strength Steel Sheets in Role Expansion Based on Combined Continuum-Fracture Mechanics (복합 연속체 파괴 역학에 기초한 초고강도강 판재의 구멍 넓힘 시험 성형성 평가)

  • Ma, N.;Park, T.;Kim, D.;Yoo, D.;Kim, Chong-Min;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.227-230
    • /
    • 2009
  • In order to predict failure behavior of advanced high-strength steel sheets (AHSS) in hole expansion tests, damage model was developed considering surface condition sensitivity (with specimens prepared by milling and punching: 340R, TRIP590, TWIP940). To account for the micro-damage initiation and evolution as well as macro-crack formation, the stress triaxiality dependent fracture criterion and rate-dependent hardening and ultimate softening behavior were characterized by performing numerical simulations and experiments for the simple tension and V-notch tests. The developed damage model and the characterized mechanical property were incorporated into the FE program ABAQUS/Explicit to perform hole expansion simulations, which showed good agreement with experiments.

  • PDF

Post-peak response analysis of SFRC columns including spalling and buckling

  • Dhakal, Rajesh P.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.311-330
    • /
    • 2006
  • Standard compression tests of steel fiber reinforced concrete (SFRC) cylinders are conducted to formulate compressive stress versus compressive strain relationship of SFRC. Axial pullout tests of SFRC specimens are also conducted to explore its tensile stress strain relationship. Cover concrete spalling and reinforcement buckling models developed originally for normal reinforced concrete are modified to extend their application to SFRC. Thus obtained monotonic material models of concrete and reinforcing bars in SFRC members are combined with unloading/reloading loops used in the cyclic models of concrete and reinforcing bars in normal reinforced concrete. The resulting path-dependent cyclic material models are then incorporated in a finite-element based fiber analysis program. The applicability of these models at member level is verified by simulating cyclic lateral loading tests of SFRC columns under constant axial compression. The analysis using the proposed SFRC models yield results that are much closer to the experimental results than the analytical results obtained using the normal reinforced concrete models are.