• Title/Summary/Keyword: Tension-Hardening

Search Result 140, Processing Time 0.022 seconds

Evaluation of the true-strength characteristics for isotropic materials using ring tensile test

  • Frolov, A.S.;Fedotov, I.V.;Gurovich, B.A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2323-2333
    • /
    • 2021
  • The paper proposes a technique for reconstructing the true hardening curve of isotropic materials from ring tensile tests. Neutron irradiated 42XNM alloy tensile properties were investigated. The calculation of the true hardening curve for tensile and compression tests of standard cylindrical samples was performed at the first step. After that, the FEM-model was developed and validated using the ring tension and compression tests (with the hardening curve defined in step 1). Finally, the true hardening curve was calculated by selecting the FEM-model parameters and its validation by ring sample tests in different states using an iterative method. For these samples, experimental and calculated gauge length values were obtained, and the corresponding material's constants were estimated.

Effects of strain hardening of steel reinforcement on flexural strength and ductility of concrete beams

  • Ho, J.C.M.;Au, F.T.K.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.185-198
    • /
    • 2005
  • In the design of reinforced concrete beams, it is a standard practice to use the yield stress of the steel reinforcement for the evaluation of the flexural strength. However, because of strain hardening, the tensile strength of the steel reinforcement is often substantially higher than the yield stress. Thus, it is a common belief that the actual flexural strength should be higher than the theoretical flexural strength evaluated with strain hardening ignored. The possible increase in flexural strength due to strain hardening is a two-edge sword. In some cases, it may be treated as strength reserve contributing to extra safety. In other cases, it could lead to greater shear demand causing brittle shear failure of the beam or unexpected greater capacity of the beam causing violation of the strong column-weak beam design philosophy. Strain hardening may also have certain effect on the flexural ductility. In this paper, the effects of strain hardening on the post-peak flexural behaviour, particularly the flexural strength and ductility, of reinforced normal- and high-strength concrete beams are studied. The results reveal that the effects of strain hardening could be quite significant when the tension steel ratio is relatively small.

Evaluation of Mechanical Properties for Magnesium Sheet Forming by Tension and Compression Tests (마그네슘 판재성형을 위한 인장 및 압축실험을 통한 기계적 물성 평가)

  • Oh, S. W.;Choo, D. K.;Lee, J. H.;Kang, C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.635-641
    • /
    • 2005
  • The crystal structure of magnesium was hexagonal close-packed (HCP), so its formability was poor at room temperature. But formability was improved in high temperature with increasing of the slip planes. Purpose of this paper was to know about the mechanical properties of magnesium alloy (AZ31B), before warm and hot forming process. The mechanical properties were defined by the tension and compression tests in various temperature and strain-rate. As the temperature was increased, yield·ultimate strength, K-value, work hardening exponent (n) and anisotropy factor (R) were decreased. But strain rate sensitivity (m) was increased. As strain-rate increased, yield·ultimate strength, K-value, and work hardening exponent (n) were increased. Also, microstructures of grains fined away at high strain-rate. These results would be used in simulations and manufacturing factor fer warm and hot forming process.

Plastic η Eactors for J-Integral Testing of Double-Edge Cracked Tension(DE(T)) Plates (양측균열인장(DE(T)) 평판의 J-적분 시험을 위한 소성 η계수)

  • Son, Beom-Goo;Shim, Do-Jun;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.259-266
    • /
    • 2004
  • Detailed two-dimensional and three-dimensional finite element (FE) analyses of double-edge cracked tension (DE(T)) specimens are carried out to investigate the effect of the relative crack length and the thickness on experimental J testing schemes. Finite element analyses involve systematic variations of relevant parameters, such as the relative crack depth and plate width-to-thickness ratio. Furthermore, the strain hardening index of material is systematically varied, including perfectly plastic (non-hardening) cases. Based on FE results, a robust experimental J estimation scheme is proposed.

Estimation of Mechanical Properties of Mg Alloy at High Temperature by Tension and Compression Tests (인장 및 압축실험을 통한 마그네슘 합금의 고온 물성 평가)

  • Oh S. W.;Choo D. K.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.69-72
    • /
    • 2005
  • The crystal structure of magnesium is hexagonal close-packed (HCP), so its formability is poor at room temperature. But formability is improved in high temperature with increasing of the slip planes. Purpose of this paper is to know about the mechanical properties of magnesium alloy (AZ31B), before warm and hot forming process. The mechanical properties were defined by the tension and compression tests in various temperature and strain-rate. As the temperature is increased, yield${\cdot}$ultimate strength, K-value, work hardening exponent (n) and anisotropy factor (R) are decreased. But strain rate sensitivity (m) is increased. As strain-rate increased, yield${\cdot}$ultimate strength, K-value, and work hardening exponent (n) are increased. Also, microstructures of grains fine away at high strain-rate. These results will be used in simulations and manufacturing factor for warm and hot forming process.

  • PDF

Endochronic prediction for the mechanical ratchetting of a stepped beam subjected to steady tension and cyclic bending

  • Pan, W. F.;Yang, Y. S.;Lu, J. K.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.327-337
    • /
    • 1998
  • In this paper, the first-order ordinary differential constitutive equations of endochronic theory are incorporated into finite element formalism. A theoretical investigation is performed on the ratchetting effect of a stepped beam subjected to steady tension and cyclic bending. Experimental data of lead alloy found in literature are used for comparison. Those data reveal that the endochronic prediction yields more adequate results than those predictions using the plasticity models with isotropic hardening or kinematic hardening, as employed by Hardy, et al. (1985).

A concrete plasticity model with elliptic failure surface and independent hardening/softening

  • Al-Ghamedy, Hamdan N.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.35-48
    • /
    • 1994
  • A plasticity-based concrete model is proposed. The failure surface is elliptic in the ${\sigma}-{\tau}$ stress space. Independent hardening as well as softening is assumed in tension, compression, and shear. The nonlinear inelastic action initiates from the origin in the ${\sigma}-{\varepsilon}$(${\tau}-{\gamma}$) diagram. Several parameters are incorporated to control hardening/softening regions. The model is incorporated into a nonlinear finite element program along with other classical models. Several examples are solved and the results are compared with experimental data and other failure criteria. "Reasonable results" and stable solutions are obtained for different types of reinforced concrete oriented structures.

Material Nonlinear Finite Element Analysis of Reinforced Concrete Structures (재료비선형성을 고려한 R/C 구조물의 유한요소해석)

  • Choi, Chang Koon;Kwak, Hyo Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.31-38
    • /
    • 1989
  • This paper concentrates on the analysis of reinforced concrete(R/C) structures subjected to monotonic loading, from zero to ultimate loads. Tensile cracking, the nonlinear stress-strain relationship for concrete and reinforcement are taken into account the concrete is assumed to be elastic in tension region and elasto-hardening plastic in compression region. The Kupfer's failure criteria and associated flow rule are adopted to govern the plastic behavior of the concrete. The reinforcing bar is considered as a elasto-hardening platic material. The tension stiffening effect of the concrete between cracks is also considered. The numerical error depends on the used finite element mesh size is reduced by correcting the slope of strain softening region of the concrete according to the developed energy criteria.

  • PDF

Uniaxial tensile test integrated design considering mould-fixture for UHPC

  • Zhang, Xiaochen;Shen, Chao;Zhang, Xuesen;Wu, Xiangguo;Faqiang, Qiu;Mitobaba, Josue G.
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.281-295
    • /
    • 2022
  • Tensile property is one of the excellent properties of ultra-high performance concrete (UHPC), and uniaxial tensile test is an important and challenging mechanical performance test of UHPC. Traditional uniaxial tensile tests of concrete materials have inherent defects such as initial eccentricity, which often lead to cracks and failure in non-test zone, and affect the testing accuracy of tensile properties of materials. In this paper, an original integrated design scheme of mould and end fixture is proposed, which achieves seamless matching between the tension end of specimen and the test fixture, and minimizes the cumulative eccentricity caused by the difference in the matching between the tension end of specimen and the local stress concentration at the end. The stress analysis and optimization design are carried out by finite element method. The curve transition in the end of specimen is preferred compared to straight line transition. The rationality of the new integrated design is verified by uniaxial tensile test of strain hardening UHPC, in which the whole stress-strain curve was measured, including the elastic behavior before cracking,strain hardening behavior after cracking and strain softening behavior.

Plastic yield behaviour of perforated sheets (천공판재의 항복거동)

  • 백승철;이동녕;오규환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.101-108
    • /
    • 1994
  • The sheet perforated with a uniform triangular pattern of round holes and subjected to in-plane stress f arbitrary biaxiality was investigated. The equivalent continuum approach was employed to develop a theoretical model for global analysis, which includes defining a yield criterion and the strain hardening in terms of apparent stresses and apparent strains. Finit element analysis and experiment tension test were performed to examine the validity of proposed yield criterion and strain hardening models of perforated sheets.

  • PDF