• Title/Summary/Keyword: Tension curve

Search Result 250, Processing Time 0.021 seconds

Mechanical Behavior and Fracture Resistance of $SCS6/Si_3N_4$ CFCCs ($SCS6/Si_3N_4$ 연속섬유강화 세라믹 복합재료의 기계적 거동 및 파괴저항평가)

  • Yoon, Yu-Sung;Kwon, Oh-Heon;Jenkins, Michael G.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.658-662
    • /
    • 2001
  • Continuous fiber ceramic composites(CPCCs) having the advantages of ceramics resistance to heat, eroson can be applied in chemical reactors and engine. CFCCs has relatively high stiffness in spite of low weight. In particular, it exhibits greatly increased toughness, which serves to decrease its inherent damage characteristics of the brittle nature of monolithic ceramics. In this wort, tensile and flexural test for SCS6 fiber/ $Si_3N_4$ matrix composites were studied. An objective of this study is to obtain the basic quantities of mechanical properties for tension and flexural test and link these to the fracture resistance behavior. Then, we showed that wok of fracture concept was useful as a method for describing fracture restance behavior of CFCCs.

  • PDF

An Analytical Study on Ductility of Reinforced Concrete Columns under Tension Controlled Region (인장지배영역에서의 철근콘크리드 기둥의 연성에 관한 해석적 연구)

  • 손혁수;김준범;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.527-532
    • /
    • 1997
  • Design strength of structural members could be determined by applying a strength reduction factor to nominal strength. At the beginning point of the transition region for the strength reduction factor, P=0.1$\sigma$$_{ck}A_g$, only sectional area and concrete strength are adopted as the variables of P=0.1$\sigma$$_{ck}A_g$. Therefore, P=0.1$\sigma$$_{ck}A_g$ is the empirically adopted which does not consider steel ratio, steel yielding stress, and steel arrangement. So, this research was perpormed the computer program for the analysis of axial force-moment-curvature relationship of reinforced concrete columns by sectional behaviour nonlinear analysis using a concrete compressive stress-strain curve, in order to investigate the ductility of reinforced concrete columns. As a result, ductility indicies of axial force, P=0.1$\sigma$$_{ck}A_g$, represented the lack of consistency of the indicies value for the various sections.

  • PDF

Measurement of Mechanical Properties for Hot Press Forming (열간프레스성형에서의 기계적 물성 측정)

  • Ahn, Kang-Hwan;Yoo, Dong-Hoon;Seok, Dong-Yoon;Kim, Hong-Gee;Park, Sung-Ho;Chung, Kwan-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.450-453
    • /
    • 2009
  • In order to overcome drawbacks of the advanced high strength steel such as inferior formability and large springback, the hot press forming process(HPF) has been being applied for forming of automotive sheet parts. Good formability and dimensional accuracy without springback as well as good crash performance of final products are the advantages of the HPF process. In this work, a method to characterize the mechanical properties of the HPF steel was developed based on the simple tension test at high temperatures and its finite element analysis, while it was applied to obtain strain rate and temperature dependent flow curves of the HPF steel. The final flow curves were represented by utilizing the Johnson-Cook type equation both in uniform and post-uniform deformation regions.

  • PDF

Strength Prediction of Bolted Woven Composite Joint Using Characteristic Length (특성 길이를 이용한 평직 복합재 볼트 체결부의 강도 예측)

  • Park Seung-Bum;Byun, Joon-Hyung;Ahn, Kook-Chan
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • A study on predicting the joint strength of mechanically fastened woven glass/epoxy composite has been performed. An experimental and numerical study were carried out to determine the characteristic length and joint strength of composite joint. The characteristic lengths for tension and compression were determined from the tensile and compressive test with a hole respectively. The characteristic lengths were evaluated by applying the point stress failure criterion to a specimen containing a hole at the center subjected to tensile loading and a specimen containing a half circular notch at the center subjected to compressive load. The joint strength was evaluated by the Tsai-Wu and Yamada-Sun failure criterion on the characteristic curve. The predicted results of the joint strength were compared with experimental results.

Reflectivity of Sn Solder for LED Lead Frame

  • Xu, Zengfeng;Gi, Se-Ho;Park, Sang-Yun;Kim, Won-Jung;Jeong, Jae-Pil
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.184-185
    • /
    • 2011
  • In this study, in order to obtain a high reflectivity for the LED lead frame, tin dip coating and tin plating were conducted respectively, and wettability of LED lead frame with tin solder also was tested by wetting balance tester. A Cu sheet was plated in Cu brighten electroplating bath and followed by immersion in a Sn electro-less plating bath [1]. On the other hand, in the dip coating process, a Cu sheet was dipped into molten tin. In the progress of wetting test, besides wetting balance curve, the maximum measured force($F_m$), the maximum withdrawal force($F_w$) and zero-cross time($t_0$) were obtained in various temperatures. With the maximum withdrawal force, the surface tension was calculated at different temperatures. The Cu sheet plated with bright Cu and Sn show a silver bright property while that of Cu dipped with Sn possessed a high reflectance density of 1.34GAM at $270^{\circ}C$.

  • PDF

VIV simulation of riser-conductor systems including nonlinear soil-structure interactions

  • Ye, Maokun;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.241-259
    • /
    • 2019
  • This paper presents a fully three-dimensional numerical approach for analyzing deepwater drilling riser-conductor system vortex-induced vibrations (VIV) including nonlinear soil-structure interactions (SSI). The drilling riser-conductor system is modeled as a tensioned beam with linearly distributed tension and is solved by a fully implicit discretization scheme. The fluid field around the riser-conductor system is obtained by Finite-Analytic Navier-Stokes (FANS) code, which numerically solves the unsteady Navier-Stokes equations. The SSI is considered by modeling the lateral soil resistance force according to nonlinear p-y curves. Overset grid method is adopted to mesh the fluid domain. A partitioned fluid-structure interaction (FSI) method is achieved by communication between the fluid solver and riser motion solver. A riser-conductor system VIV simulation without SSI is firstly presented and served as a benchmark case for the subsequent simulations. Two SSI models based on a nonlinear p-y curve are then applied to the VIV simulations. Also, the effects of two key soil properties on the VIV simulations of riser-conductor systems are studied.

Saturation Boiling Heat Transfer on a Heated Surface With Impinging Water Jet (충돌수분류에 의한 포화비등열전달)

  • Ohm, Ki-Chan;Seo, Jeong-Yun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.2
    • /
    • pp.182-187
    • /
    • 1986
  • Experimental measurements of the heat transfer and heat flux to a jet impinging on a heated surface were obtained in the nucleate boiling regimes. Tes-variables were jet at velocity and aspect ratio ($b/\ell$) of the heated surface. A slope of nucleate boiling curve increased with increasing the aspect ratio of the heated surface, namely approaching a rectangular square, and it is shown that surface tension has an important role for the onset of nucleate boiling heat transfer. A generalized correlation of the jet nucleate boiling heat transfer. A generalized correlation of the jet nucleate boiling heat transfer was found using a pi theorem.

  • PDF

$CO_2$ Buffering and Hydrogen Ion Concentration Gradient across Cell Membrane in Acute Acid-Base Disturbances in Dogs (혈액과 조직의 $CO_2$완충능 및 세포막을 통한 $H^+$농도 경사)

  • Hwang, Sang-Ik;Park, Young-Bae;Min, Byoung-Ku;Kim, Woo-Gyeum
    • The Korean Journal of Physiology
    • /
    • v.17 no.2
    • /
    • pp.119-124
    • /
    • 1983
  • The in vivo and in vitro buffer capacities of true plasma and tissue buffer capaciies were compared on dogs. Intracellular pH was determined on skeletal muscle by a modification of the method of Schloerb and Grantham using $C^{14}$ DMO. The in vivo curve for plasma or extracellular fluid has a much lower slope than the in vitro curve. The in vivo slope of skeletal muscle in the dog is approximately 20 sl. The slope for skeletal muscle in vivo falls between the in vitro and in vivo slopes of true plasma. It appears that intracellular hydrogen ion varies linearly with extracellular hydrogen ion when $CO_2$ tension is changed. Both hydrogen ion gradient and Hi/He ratio vary in skeletal muscle, with an increase in $CO_2$ tension. Infusion of 0.3N HCl gave two distinct patterns, the $H_i-H_e$ gradient decreased; and it would appear that very little hydrogen ion as such penetrated to the inside of the cells during the time of observation. Although lactic acid presumably enters the cell and the same of larger load was given as was used for hydrochloric acid, only very mild intracellular acidosis resulted, ostensibly due to metabolism of this substrate. Gluconic acid produced a more severe acidosis, both intracellularly and extracellularly, but with both of these acids the hydrogen ion gradient decreased and the $H_i/H_e$ ratio also decreased. The experiments on the dogs with hemorrhagic shock the hydrogen ion increase producing the acidosis originates inside the cells. Even so, the hydrogen ion gradient increased only very slightly in the acute experiments. This may suggest that even over short intervals of time skeletal muscle cells have a capacity to pump out hydrogen ions at a rate which maintains approximately the normal $H_i/H_e$ gradient when the source of the hydrogen ion is in the interior of the cell.

  • PDF

Wall Tie Member Force Curve for the Construction Tower Crane (건축용 타워크레인 마스트의 횡방향 지지요소인 월타이 부재력 특성곡선)

  • Ko, Kwang IL;Oh, W.H.;Lee, E.T.
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.697-706
    • /
    • 2006
  • Tower crane's wall tie is generally used for extending of mast height according to rising of lifting height. In order to get wall tie member force this problem, this study concerning wall tie is based on load data described in manual book of 290HC model. This study made the equation of wall tie member force and computer programming for calculating wall tie member force and then get ${\theta}-P$ curves(angle-wall tie force). After considering the ${\theta}-P$ curves, optimum angle range ($48.4^{\circ}{\sim}77.2^{\circ}$) about wall ties (A), (C) members was obtained. Member force of wall tie (B) was changed from tension to compression or from compression to tension at $74^{\circ}$ in service and $54^{\circ}$ in out of service. When both horizontal force($H_A$) and torsional moment ($M_D$) were varied from (+) to (-), wall tie force(A, B, C) were changed almost symmetrically about ${\theta}$-axis. Because this study was based on wall tie analysis conditions, wall tie members in symmetric and ideal geometry shape used for analizing wall tie of tower crane, it is necessary to have more careful verification in order to apply generally the results of this study.

A Numerical Model of Three-dimensional Soil Water Distribution for Drip Irrigation Management under Cropped Conditions (작물 흡수를 고려한 3차원 토양수분 분포 모델 개발을 통한 최적 점적 관개 연구)

  • Kwon, Jae-Phil;Kim, Seung-Hyun;Yoo, Sun-Ho;Ro, Hee-Myong
    • Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.116-123
    • /
    • 2000
  • A numerical model of three-dimensional soil water distribution for drip irrigation management under cropped conditions was developed using Richards equation in Cartesian coordinates. The model accounts for both seasonal and diurnal changes in evaporation and transpiration, and the growth of plant root and the shape of root zone. Solutions were numerically approximated using the Crank-Nicolson implicit finite difference technique on the block-centered grid system and the Gauss-Seidel elimination in tandem. The model was tested under several conditions to allow the flow rates and configurations of drip emitters vary. In general, simulation results agreed well with experimental results and were as follows. The velocity of soil-water flow decreased drastically with distance from the drip source, and the rate of expansion of the wetted zone decreased rapidly during irrigation. The wetting front of wetted zone from a surface drip emitter traveled farther in vertical direction than in horizontal direction. Under this experimental weather condition, water use efficiency of a drip-irrigated apple field was greatest for 4-drip-emitter system buried at 25 cm, resulting from 10% increase in transpiration but 20% reduction in soil evaporation compared to those for surface 1-drip emitter system. Soil moisture retention curve obtained using disk tension infiltrometer showed significant difference from the curve obtained with pressure plate extractor.

  • PDF