• 제목/요약/키워드: Tension crack

검색결과 656건 처리시간 0.023초

인장연화거동을 고려한 강섬유 보강 초고성능 콘크리트 보의 모멘트-곡률 해석 (Moment-Curvature Analysis of Steel Fiber-Reinforced Ultra High Performance Concrete Beams with Tension Softening Behavior)

  • 양인환;조창빈;김병석
    • 한국전산구조공학회논문집
    • /
    • 제24권3호
    • /
    • pp.237-248
    • /
    • 2011
  • 강섬유 보강 콘크리트의 인장연화특성은 구조적 거동에 매우 중요한 역할을 하며, 강섬유 보강 초고성능 콘크리트의 우수한 구조성능을 파악하기 위해서는 인장연화거동의 정밀모델링 및 이를 반영한 수치해석 기법이 필요하다. 따라서, 이 논문에서는 강섬유로 보강된 콘크리트의 부재의 인장연화거동 특성을 고려한 휨 거동을 예측하기 위한 수치해석 기법을 제시하였다. 강섬유 보강 콘크리트의 하중-균열개구변위 실험결과를 반영하여 가상균열모델에 근거한 균열방정식과 역해석 기법에 의해 인장연화모델링을 수행하였다. 또한, 인장연화거동을 반영한 재료모델링을 수행하였다. 제시기법에 의한 초고성능 콘크리트 보의 모멘트-곡률 수치해석 결과를 실험결과와 비교 분석하였으며, 수치해석 결과와 실험결과는 비교적 잘 일치하고 있다. 제안기법에 의해 강섬유 보강 초고강도 콘크리트 보의 휨강도를 정확하게 예측할 수 있다고 판단된다.

A methodology for remaining life prediction of concrete structural components accounting for tension softening effect

  • Murthy, A. Rama Chandra;Palani, G.S.;Iyer, Nagesh R.;Gopinath, Smitha
    • Computers and Concrete
    • /
    • 제5권3호
    • /
    • pp.261-277
    • /
    • 2008
  • This paper presents methodologies for remaining life prediction of plain concrete structural components considering tension softening effect. Non-linear fracture mechanics principles (NLFM) have been used for crack growth analysis and remaining life prediction. Various tension softening models such as linear, bi-linear, tri-linear, exponential and power curve have been presented with appropriate expressions. A methodology to account for tension softening effects in the computation of SIF and remaining life prediction of concrete structural components has been presented. The tension softening effects has been represented by using any one of the models mentioned above. Numerical studies have been conducted on three point bending concrete structural component under constant amplitude loading. Remaining life has been predicted for different loading cases and for various tension softening models. The predicted values have been compared with the corresponding experimental observations. It is observed that the predicted life using bi-linear model and power curve model is in close agreement with the experimental values. Parametric studies on remaining life prediction have also been conducted by using modified bilinear model. A suitable value for constant of modified bilinear model is suggested based on parametric studies.

콘크리트 파괴역학을 이용한 철근콘크리트 인장부재의 균열성장 해석 (Cracking Analysis of Reinforced Concrete Tension Members with Concrete Fracture Mechanics)

  • 홍창우;윤경구;양성철
    • 콘크리트학회논문집
    • /
    • 제12권1호
    • /
    • pp.3-12
    • /
    • 2000
  • A fracture energy concept proposed by Ouyang and Shah's fracture mechanics approach was used to predict cracking of reinforced concrete members subjected to tension. In this approach, fracture properties in plain concrete which incorporate the presence of the fracture process zone are first determined from the generalized size effect method, then fracture energy required for crack propagation with the same dimension and material properties are evaluated using an R-curve. Subsequently taking into account the material properties in Ouyang and Shah's approach, a theoretical analysis to predict the mechanical behavior of reinforced concrete members subjected to tension was performed and compared to observed experimental results. It is seen that the predicted average crack spacing curves agree well with the experimental results, whereas the analytical method seems to predict lower values for this study. The analytical approach predicts well responses of stress-strain curves before and after the first crack is formed. It is concluded from this study that a fracture energy concept based on the R-curve and the generalized size effect method is a rational approach to predict cracking of reinforced concrete members subjected to tension.

Stress intensity factors for double-edged cracked steel beams strengthened with CFRP plates

  • Wang, Hai-Tao;Wu, Gang;Pan, Yu-Yang;Zakari, Habeeb M.
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.629-640
    • /
    • 2019
  • This paper presents a theoretical and finite element (FE) study on the stress intensity factors of double-edged cracked steel beams strengthened with carbon fiber reinforced polymer (CFRP) plates. By simplifying the tension flange of the steel beam using a steel plate in tension, the solutions obtained for the stress intensity factors of the double-edged cracked steel plate strengthened with CFRP plates were used to evaluate those of the steel beam specimens. The correction factor α1 was modified based on the transformed section method, and an additional correction factor φ was introduced into the expressions. Three-dimensional FE modeling was conducted to calculate the stress intensity factors. Numerous combinations of the specimen geometry, crack length, CFRP thickness and Young's modulus, adhesive thickness and shear modulus were analyzed. The numerical results were used to investigate the variations in the stress intensity factor and the additional correction factor φ. The proposed expressions are a function of applied stress, crack length, the ratio between the crack length and half the width of the tension flange, the stiffness ratio between the CFRP plate and tension flange, adhesive shear modulus and thickness. Finally, the proposed expressions were verified by comparing the theoretical and numerical results.

철근(鐵筋)콘크리트 보의 부착거동(附着擧動)에 관한 연구(硏究) (A Study on the Bond Behavior of Reinforced Concrete Beam)

  • 이봉학;홍창우;이주형;김동호
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.87-95
    • /
    • 1998
  • Cracking is considered to be one of the important factors in determining the durability of reinforced concrete structures. When the bending stress exceeds the modulus of rupture of the concrete, cracking form along the length of members. The total load is transferred across these cracks by the reinforcement, but the concrete between cracks is still capable of carrying stresses due to the bond between steel and concrete. This phenomenon is called the tension stiffening effect. The tension stiffening effect is affected by many variables, such as the bond stress, strength of concrete, interrocking of aggregate, type of steel, and dowel action of steel. Also, this tension stiffening effect is usually quite significant in beams under service loading, and must be taken into account in the calculation of deflection and crack widths. In this study, the experiment was carried out on types of specimen, strength of concrete, and steel ratio and finite element analysis were compared in terms of load-deflection relationship, crack pattern.

  • PDF

강연선으로 보강된 초고성능 콘크리트 인장부재의 인장강화 및 균열거동 평가 (Evaluation on Tension Stiffening and Cracking Behavior of Ultra-High Performance Concrete Members with Strands)

  • 박민국;한선진;김강수
    • 대한건축학회논문집:구조계
    • /
    • 제35권5호
    • /
    • pp.125-132
    • /
    • 2019
  • Ultra-high performance concrete (UHPC) has high compressive and tensile strengths due to the particle packing, and its ductile behavior can be ensured by utilizing steel fibers. However, since the UHPC members exhibit different characteristics of crack behavior and tensile behavior from normal concrete, the tension stiffening and cracking characteristics of the UHPC should be accurately modeled for the design and analysis of the UHPC members. In this study, uniaxial tension tests was conducted on the UHPC members with strands, where the test variables were diameter and reinforcing ratio of strands. Detailed analyses were also conducted to identify the tensile characteristics and crack behavior of the UHPC members. By comparing the test results with current code provisions and other models proposed by existing researchers, their applicability for estimation of crack behavior of the UHPC members was examined.

반복 일축응력하의 알루미나 파괴거동에 미치는 압축응력의 영향 (The Effect of Compressive Stress on Fracture Response of Alumina under Uniaxial Stress Cycling)

  • 김기태;서정;백성기
    • 한국세라믹학회지
    • /
    • 제28권9호
    • /
    • pp.712-720
    • /
    • 1991
  • The effect of cyclic compressive stress on fracture responses of Al2O3 was investigated under uniaxial stress cycling. Experimental data were obtained for Al2O3 tension specimens under uniaxial tension-unloading and tension-compression cyclic loading conditions. To investigate the effect of compressive stress on the crack growth, theoretical results from the crack growth rate were compared with measured stress vs. failure relations. At low stress level in tension-compression cycling, residual tensile strains were also observed about failure time.

  • PDF

Tension and impact behaviors of new type fiber reinforced concrete

  • Deng, Zongcai;Li, Jianhui
    • Computers and Concrete
    • /
    • 제4권1호
    • /
    • pp.19-32
    • /
    • 2007
  • This paper is concentrated on the behaviors of five different types of fiber reinforced concrete (FRC) in uniaxial tension and flexural impact. The complete stress-strain responses in tension were acquired through a systematic experimental program. It was found that the tensile peak strains of concrete with micro polyethylene (PEF) fiber are about 18-31% higher than that of matrix concrete, those for composite with macro polypropylene fiber is 40-83% higher than that of steel fiber reinforced concrete (SFRC). The fracture energy of composites with micro-fiber is 23-67% higher than that of matrix concrete; this for macro polypropylene fiber and steel fiber FRCs are about 150-210% and 270-320% larger than that of plain concrete respectively. Micro-fiber is more effective than macro-fiber for initial crack impact resistance; however, the failure impact resistance of macro-fiber is significantly larger than that of microfiber, especially macro-polypropylene-fiber.

Zr-2.5Nb 압력관의 휘어진 CT시편으로 측정한 J 저항곡선의 정확도에 관한 연구 (A Study on Accuracy of J-Resistance Curves Measured with Curved Compact Tension Specimen of Zr-2.5Nb Pressure Tube)

  • 윤기봉;박태규;김영석
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1986-1996
    • /
    • 2003
  • Methodology based on the elastic-plastic fracture mechanics has been widely accepted in predicting the critical crack length(CCL) of pressure tubes of CANDU nuclear plants. A conservative estimate of CCL is obtained by employing the J-resistance curves measured with the specimens satisfying plane strain condition as suggested in the ASTM standard. Due to limited thickness of the pressure tubes the curved compact tension(CT) specimens taken out from tile pressure tube have been used in obtaining J-resistance curves. The curved CT specimen inevitably introduce slant fatigue crack during precracking. Hence, effect of specimen geometry and slant crack on J-resistance curve should be explored. In this study, the difference of J integral values between the standard CT specimens satisfying plane strain condition and the nonstandard curved CT with limited thickness (4.2mm) is estimated using finite element analysis. The fracture resistance curves of Zr-2.5Nb obtained previously by other authors are critically discussed. Various finite element analysis were conducted such as 2D analysis under plane stress and plane strain conditions and 3D analysis for flat CT, curved CT with straight crack and curved CT with slant crack front. J-integral values were determined by local contour integration near the crack tip, which was considered as accurate J-values. J value was also determined from the load versus load line displacement curve and the J estimation equation in the ASTM standard. Discrepancies between the two values were shown and suggestion was made for obtaining accurate J values from the load line displacement curves obtained by the curved CT specimens.

측정변형률을 이용한 RC 구조물의 균열검출에 관한 실험적 연구 (An Experimental Study on Crack Detection of RC Structure using Measured Strain)

  • 박기태;박흥석;이규완
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권3호
    • /
    • pp.193-199
    • /
    • 2002
  • 콘크리트 구조물에 발생하는 구조적인 균열은 재하하중에 의하여 콘크리트가 저항할 수 있는 인장강도보다 더 큰 인장강도가 가해졌을 때 콘크리트의 인장영역에서 발생하며, 이는 구조물의 노후화 또는 재하하중에 대한 저항능력이 감소되었음을 의미한다. 그러므로 콘크리트에 발생한 구조적 균열은 구조물에 치명적인 손상을 유발시킬 수 있으며, 구조물의 안전성 확보와 효과적인 유지관리를 위해서는 이를 검출하는 기법에 대한 연구가 반드시 필요한 실정이다. 본 연구에서는 토목계측 분야에서 가장 널리 활용되고 있는 변형률 센서를 철근콘크리트 보에 부착하여 보의 인장부와 압축부의 변형률을 측정하는 실내실험을 수행하였으며, 하중 재하에 따른 변형률의 변화, 측정부위의 탄성계수 변화, 그리고 중립축의 변화 등을 비교 분석하였다. 분석 결과로부터, 측정된 변형률을 이용하여 중립축의 변화 추이를 추정하므로써 가장 효과적으로 균열을 검출할 수 있는 알고리즘을 제시하였다.