• Title/Summary/Keyword: Tension clamp

Search Result 27, Processing Time 0.025 seconds

Influence of Initial Clamping Force of Tension Clamp on Performance of Elastic Rail Fastening System (텐션클램프의 초기 체결력이 탄성레일체결장치의 성능에 미치는 영향)

  • Lee, Dong Wook;Choi, Jung Youl;Baik, Chan Ho;Park, Yong Gul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1243-1251
    • /
    • 2013
  • The purpose of this study is to investigate the influence of initial clamping force of tension clamp on the performance of an elastic rail fastening system used in sharp curve track. In this study, the initial clamping force and the increasing lateral wheel loads were conducted in the analytical and experimental study, i.e., finite element analysis, laboratory and field test. Using the analytical and experimental results, the performance of the tension clamp was investigated. It was found that the stress of tension clamp depends on the initial clamping force. Therefore the initial clamping force appeared to directly affect the compression stress of the tension clamp. It was found that the compression stress of tension clamp was transferred to the tensile stress by applied the lateral wheel load in service sharp curve track. Further, it was concluded that the initial clamping force was applied on the strengthening force for the tension clamp and then the appropriate initial clamping force was important to ensure a stable performance and long term endurance of tension clamp.

Behavior of Tension Clamp in Rail Fastening System (레일 체결장치 텐션클램프의 거동)

  • Choi, Shin-Hyung;Park, Beom-Ho;Yun, Kyung-Min;Bae, Hyun-Ung;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8812-8819
    • /
    • 2015
  • In a situation in which importance of rail fastening system is growing with increasing the construction of concrete track, an accident of tension clamp(the component of rail fastening system) breaking has been recently occurred. This results from various factors such as field condition, operating agency, running condition, traffic frequency and so on. Thus, the study for the behavior of tension clamp is required. In this paper, an experiment and finite element analysis(FEA) have been performed to analyse the mechanical behavior of tension clamp. The stress and displacement of tension clamp have been analyzed as the clamping force through a laboratory test, and they were compared with FEA results. Furthermore, the stress and displacement of the tension clamp are derived from train load condition applying the verified model, and the fatigue vulnerability of the tension clamp is identified through stress analysis.

Evaluation on Damage Weak Part of Rail Fastening System for Concrete Tracks (콘크리트 궤도용 탄성레일체결장치 손상취약부 분석)

  • Choi, Jung-Youl;Kim, Sang-Jin;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.265-270
    • /
    • 2022
  • The purpose of this study is to derive the damage weak part of the elastic rail fastening system for concrete tracks (System 300-1). In the concrete tracks, the elastic rail fastening system sticks the rail and the sleeper and reacts all the time when the train is running. Among the components of the rail fastening system, the resilience pad and tension clamp were fatigue members and were constantly deformed in response to compressive and uplift forces. In this study, the residual deformation characteristics of the tension clamp according to the period of use were analyzed using by specimens taken on site in the same section for 6, 11, and 16 years on the serviced urban transit. In addition, the damage mechanisms for each component were derived based on finite element analysis. As a result of the numerical analysis, the stress (strain) of each part of the tension clamp according to the external force from the applied clamping force was analyzed to derive the damaged weak part of the tension clamp.

Development of Clamp Type Transferring Mechanism for Package Substrate's Wet Process (패키지 기판 습식 공정용 클램프 이송 장치의 개발)

  • Ryu, Sun-Joong;Heo, Jun-Yeon;Cho, Seung-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.193-201
    • /
    • 2011
  • Clamp type transferring mechanism for package substrate's wet processes was newly developed instead of conventional roller type transferring mechanism. Clamp type transferring mechanism has the advantages of reducing the panel deflection and of minimizing the contact problem between the panel and the transferring mechanism. Individual clamp of the mechanism has two distinct mechanical functions which are perfectly fixing a panel during the transferring and generating adequate tension for the panel. To determine the mechanical parameters of the clamp, panel deflection simulation was conducted and the result was verified by the panel deflection measurement. Also, fixing angle of a clamp could be determined by the free body force analysis of individual clamp. Finally clamp type transferring mechanism was actually manufactured and the transferring performance was verified during the water spraying condition of the package substrate's wet processes.

The Cause Analysis on Fracture of Dropper Clamp in Catenary System (전차선로 드로퍼 클램프 파단 원인 분석)

  • Kim Jung-Nam;Kwon Sung-Tae;Kang Kae-Myung
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.909-914
    • /
    • 2004
  • This study investigate the cause analysis on fracture of dropper clamp in catenary system. Dropper clamp is using as a holder between messenger wire and contact wire in catenary system. To analyze the cause analysis on fracture of dropper clamp, we have conducted experiment such as tension withstand strength test, holding strength test of a new products, SEM and EDX of field fractured specimens.

  • PDF

Development of High Tension Tensile Tester for Transmission Line (송배전 선로 고장력 인장시험기 개발)

  • Shin, Dong-Hwa;Lee, Byung-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.219-225
    • /
    • 2018
  • In this paper, for the testing of tensile strength of dead-end clamp used in transmission line, resulting values were estimated by designing and producing the horizontal version of widely-used vertical tensile tester. Tensile strength test of dead-end clamp for transmission line is essential for quality test of products. Moreover, tensile tester is an equipment that requires high level of reliability which needs to be examined through sampling tests commensurate with total inspection. Frames of tensile tester were made up of H-beams so that it can endure more than 20 [tons] of load capability and the test was implemented for 60[seconds] applying five types of tension. In consequence, the tester could withstand up to 21,600[kg] of weight as well as all types of tension. This newly developed horizontal tensile tester can be utilized in figuring out properties of various materials by estimating tensile strength of materials such as metal, rubber and fiber.

Feasibility of Using the Clamp Meter in Measuring X-Ray Tube Current

  • Kim, Sung-Chul
    • International Journal of Contents
    • /
    • v.9 no.1
    • /
    • pp.38-41
    • /
    • 2013
  • The clamp meter maintains electric safety as a non-invasive method while measuring the absolute value of tube current with it has been recently developed for an X-ray high-tension cable. Especially this can show high accuracy at short X-ray exposure time. Considering such a condition, this study is to evaluate the feasibility of a clamp meter in measuring X-ray tube current by taking the measurements and comparing with those of the Dynalyzer III which has been considered as a standard measuring device. From measuring the tube current accuracy depending on changes in tube voltage and exposure time, the clamp meter showed higher accuracy rate which was -1.3~4.2% difference. Thus clamp meter can be used for clinical radiologists who are not familiar electric circuit to manage X-ray devices easily and correctly in the future.

A Study on Specification of Hardware and Insulator for 400km/h Class High-speed Railway (400km/h급 고속철도용 금구 및 애자사양에 대한 고찰)

  • Cho, Ho-Ryung;Lee, Ki-Won;Kwon, Sam-Young;Cho, Young-Hyeon;Lee, Sang-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1444-1452
    • /
    • 2011
  • At present, Kyungbu high-speed railway is operated with 300km/h, Honam high-speed railway is being constructed with 350km/h, and the development for the overhead contact line system is to be conducted for the next-generation high-speed railway with the speed of 400km/h. It is necessary to set up the specification and criteria for the key parts such as dropper, termination clamp and tension insulator for the 400km/h railway line. In this paper, the specification and the criteria for dropper, termination clamp and tension insulator has been reviewed and proposed in order to secure long-term reliability and stability under the maximum speed of 400km/h. Also, the specification, criteria and international standards for 300km/h class and 350km/h class railway line system and the international standards related with the insulators have been reviewed, compared and analysed.

  • PDF

Change of End-tidal PCS During Cardiopulmonary Bypass (체외순환시 호기말 이산화탄소압의 변화)

  • 오중환
    • Journal of Chest Surgery
    • /
    • v.25 no.12
    • /
    • pp.1399-1403
    • /
    • 1992
  • The evaluation of the effectivess of ongoing cardiopulmonary resucitation efforts is dependent on the commonly used methods, such as the presence of femoral or carotid artery pulsations, arterial blood gas determinations, peripheral arterial pressure and intracardiac pressure monitoring. But recent studies suggest that end-tidal carbon dioxide tension serves as a non-invasive measurement of pulmonary blood flow and therefore cardiac output under constant ventilation. A prospective clinical study was done to determine whether end-tidal carbon dioxide monitoring in open heart surgery under cardiopulmonary bypass could be used as a prognostic indicator of bypass weaning. We monitored end-tidal PCO2 values continuously during cardiopulmonary bypass in 30 patients. "Ohmeda 5210 CO-2 monitor" under infrared absorption method were incorperated into the ventilator circuit by means of a side point adaptor between endotracheal tube and ventilator tubing. 18 patients[Group I ] were res-ucitated from partial bypass followed by aorta cross clamp off and 12 patients[Group II ] from aorta cross clamp off followed by partial bypass. But there was no difference between two groups[p>0.05]. The value of end-tidal carbon dioxide tension during ventricular fibrillation or nearly arrest state was 6.6$\pm$2.9 mmHg, and at the time of spontaneous beating was 19.3$\pm$5.6 mmHg[Mean$\pm$Standard deviation], In conclusion end-tidal carbon dioxide tension monitoring provides clinically useful, continous, noninvasive and supplementary prognostic indicator during cardiopulmonary bypass weaning procedures.rocedures.

  • PDF

The Performance Evaluation of a Hydraulic and Magnetic Clamp Device Manufactured to Transport with Safety the Curved Steel Plate Required for Shipbuilding

  • Moon, Byung Young;Park, Kwang Bok;Hong, Young Jun;Lee, Sung Bum;Lee, Ki Yeol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.527-535
    • /
    • 2015
  • As a new technical approach, a hydraulic and magnetic clamp device was attempted to realize a magnetic clamp crane system that uses 8 simultaneously actuating individual hydraulic cylinders. Through this approach, a Sr type of ferritic permanent magnet ($SrO{\cdot}6Fe_2O_3$), not the previously employed electro-magnet, was utilized for the purpose of lifting and transporting the heavy weighted and oversized curved steel plates used for manufacturing the ships. This study is aimed at manufacturing and developing the hydraulic magnetic clamp prototype, which is composed of three main parts - the base frame, cylinder joint, and magnet joint - in order to safely transport such curved steel plates. Furthermore, this research was pursued to conduct a performance evaluation as to the prototype manufacture and acquire the planned quantity value and the development purpose items. The most significant item for a performance evaluation was estimated for the magnetic adhesive force (G) and in this process, a ferritic permanent magnet (Sr type) with 3700~4000 G of residual induction (Br) and 2640/2770 Oe of coercive force (Hc) was utilized. In addition, other relevant items such as hoist tension (kN), transportation time (sec), and the applied load (Kgf) exerted on the hydraulic cylinders were also evaluated in order to acquire the optimum quantity value. As a result of the evaluation, the relevant device turned out to be suitable for safely transporting the curved steel plates.