• Title/Summary/Keyword: Tension Anchor

Search Result 117, Processing Time 0.023 seconds

Monitoring of tension force and load transfer of ground anchor by using optical FBG sensors embedded tendon

  • Kim, Young-Sang;Sung, Hyun-Jong;Kim, Hyun-Woo;Kim, Jae-Min
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.303-317
    • /
    • 2011
  • A specially designed tendon, which is proposed by embedding an FBG sensor into the center king cable of a 7-wire strand tendon, was applied to monitor the prestress force and load transfer of ground anchor. A series of tensile tests and a model pullout test were performed to verify the feasibility of the proposed smart tendon as a measuring sensor of tension force and load transfer along the tendon. The smart tendon has proven to be very effective for monitoring prestress force and load transfer by measuring the strain change of the tendon at the free part and the fixed part of ground anchor, respectively. Two 11.5 m long proto-type ground anchors were made simply by replacing a tendon with the proposed smart tendon and prestress forces of each anchor were monitored during the loading-unloading step using both FBG sensor embedded in the smart tendon and the conventional load cell. By comparing the prestress forces measured by the smart tendon and load cell, it was found that the prestress force monitored from the FBG sensor located at the free part is comparable to that measured from the conventional load cell. Furthermore, the load transfer of prestressing force at the tendon-grout interface was clearly measured from the FBGs distributed along the fixed part. From these pullout tests, the proposed smart tendon is not only expected to be an alternative monitoring tool for measuring prestress force from the introducing stage to the long-term period for health monitoring of the ground anchor but also can be used to improve design practice through determining the economic fixed length by practically measuring the load transfer depth.

Tensile Properties of CFRP Rod and U Type Anchor manufactured by UCAS Method (UCAS 공법에 의해서 제작된 CFRP rod와 U형 앵커의 인장특성)

  • Seo, Seung-Tag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.309-315
    • /
    • 2006
  • Important material properties of UCAS rod can divide by tension characteristic of base rod part and both end part of U type anchor. Tensile properties of base rod part need as concrete reinforcement material as an alternative material of reinforcing rod, and tensile properties of U type anchor is used at connection with UCAS rod. This treatise carry out tensile test of UCAS rod, examine necessary properties such as strength, elastic modulus and maximum capacity of UCAS rod as reinforcement material of concrete. Also, to examine material properties carry out tensile test of U type anchor.

  • PDF

Development of Design Method of Compression(SSC) Anchor (압축헝 앵커의 설계법 개발)

  • 임종철;홍석우;이태형;이외득
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.63-78
    • /
    • 1999
  • For the design of compression anchor, three things should be considered. The first is a resistance force by skin friction, the second is a tension strength of tendon, and the third is a compressive strength of grout. Especially, compressive strength of grout is the most important design parameter of compression anchor. When compression anchor is pulled out from the ground, the compressive strength of grout increases by confining pressure of ground($\sigma_{tg$). Here, $\sigma_{tg$ is the confining pressure which is produced by earth pressure at rest and by lateral expansion of grout. We call this phenomenon of increase of confining pressure "poisson effect". In this paper, the design method of compression anchor called SSC anchor and the computer program for the design are developed through compression tests of anchor body grout.ody grout.

  • PDF

Numerical analysis of Multi-Strand Anchor (하중분산 인장형 앵커의 수치해석)

  • Kim, Sung-Kyu;Kang, Byung-Chul;Kim, Nak-Kyung;Kim, Jeong-Ryeol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1243-1249
    • /
    • 2010
  • Ground anchors can be good solution in large and deep excavation. Anchored supports generally provide larger workspace than strut supports and good performances. The major benefit provided by these anchored systems was the open excavation area created by eliminating horizontal or raked struts, which generally inhibit rapid construction within the site area. In loose soils, however, anchors are sometimes hard to get high pullout anchor capacity, so that the spacing of anchor both horizontally and vertically is frequently controlled, in which the construction costs of anchors are increased. In order to increase anchor capacity, therefore, conceptual introduction of the multi-strand anchor is presented in this paper. Also, this study shows an numerical study of predicting the load transfer of the multi-strand anchor and a beam-column analysis was performed by a Elastic-Plastic beam theory.

  • PDF

Holding Mechanism of Anchor System for Fisheries Facilities (계류기초의 파주력 산정에 관한 연구)

  • Jung, Jin-Ho;Ryu, Cheong-Ro;Kim, Jong-Gyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.2
    • /
    • pp.132-147
    • /
    • 1996
  • The optimal design of floating type fisheries facilities in the open sea is demanded considering with the severe hydrodynamic forces on floating body, mooring tension and holding force of anchor. For conserving the facilities in most effective state, design and selection of anchor system is one of the most important fundamental subject. To enhance the design procedure of anchor system the holding forces of anchor are investigated by the hydraulic model test and are compared with the typical conventional results for various anchors. Applicability of previous estimation methods of holding force are checked and holding mechanism of anchor is discussed. Using the results a new computational concept of holding force is suggested considering mainly the effects of passive soil pressure (resistance), steady soil pressure, and surface friction etc. The new estimation method is proved as a feasible one by comparing the results of hydraulic model experiments. Applicability of various anchors to the anchor system on open sea fisheries structures is comprehensively reviewed using the present model tests and previous study results in the viewpoint of economy, construction and stability etc. Using the results, fundamental anchoring system design procedures are suggested to apply huge marine ranching complex with increase of the holding capacity of anchor under the optimum cost.

  • PDF

Simulation and Experimental Study of A TLP Type Floating Wind Turbine with Spoke Platform

  • Kim, Hyuncheol;Kim, Imgyu;Kim, Yong Yook;Youn, DongHyup;Han, Soonhung
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.179-191
    • /
    • 2016
  • As the demand for renewable energy has increased following the worldwide agreement to act against global climate change and disaster, large-scale floating offshore wind systems have become a more viable solution. However, the cost of the whole system is still too high for practical realization. To make the cost of a floating wind system be more economical, a new concept of tension leg platform (TLP) type ocean floating wind system has been developed. To verify the performance of a 5-MW TLP type ocean floating wind power system designed by the Korea Advanced Institute of Science and Technology, the FAST simulation developed by the National Renewable Energy Laboratory is used. Further, 1/50 scale model tests have been carried out in the ocean engineering tank of the Research Institute of Medium and Small Shipbuilding, Korea. This paper compares the simulation and ocean engineering tank test results on motion prediction and tension assessment of the TLP anchor.

Temperature Compensation of Optical FBG Sensors Embedded Tendon for Long-term Monitoring of Tension Force of Ground Anchor (광섬유 센서 내장형 텐던을 이용한 그라운드 앵커의 장기 장력모니터링을 위한 온도보상)

  • Sung, Hyun-Jong;Kim, Young-Sang;Kim, Jae-Min;Park, Gui-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.13-25
    • /
    • 2012
  • Ground anchor method is one of the most popular reinforcing technology for slope in Korea. For the health monitoring of slope which is reinforced by permanent anchor for a long period, monitoring of the tension force of ground anchor is very important. However, since electromechanical sensors such as strain gauge and V/W type load cell are also subject to long-term risk as well as suffering from noise during long distance transmission and immunity to electromagnetic interference (EMI), optical FBG sensors embedded tendon was developed to measure strain of 7-wire strand by embedding FBG sensor into the center king cable of 7-wire strand. This FBG sensors embedded tendon has been successfully applied to measuring the short-term anchor force. But to adopt this tendon to long-term monitoring, temperature compensation of the FBG sensors embedded tendon should be done. In this paper, we described how to compensate the effect in compliance with the change of underground temperature during long-term tension force monitoring of ground anchors by using optical fiber sensors (FBG: Fiber Bragg Grating). The model test was carried out to determine the temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon. The determined temperature sensitivity coefficient ${\beta}^{\prime}=2.0{\times}10^{-5}/^{\circ}C$ was verified by comparing the ground temperatures predicted from the proposed sensor using ${\beta}^{\prime}$ with ground temperatures measured from ground thermometer. Finally, temperature compensations were carried out based on ${\beta}^{\prime}$ value and ground temperature measurement from KMA for the tension force monitoring results of tension type and compression type anchors, which had been installed more than 1 year before at the test site. Temperature compensated tension forces are compared with those measured from conventional load cell during the same measuring time. Test results show that determined temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon is valid and proposed temperature compensation method is also appropriate from the fact that the temperature compensated tension forces are not dependent on the change of ground temperature and are consistent with the tension forces measured from the conventional load cell.

Characteristic of hull motion due to external forces at anchor (묘박 중 외력에 의한 선체의 운동 특성)

  • Chang-Heon LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.2
    • /
    • pp.135-144
    • /
    • 2023
  • In order to provide basic data to increase the efficiency and stability of seamanship at anchoring, the characteristics of the hull motion including dragging anchor due to external forces were observed at Mokpo and Jinhae anchorage for the avoidance of the typhoon. As a result, it is necessary to check the embedding motion and holding power of the anchor according to at initial position to decrease dragging anchor. Dragging anchor at anchorage seems to have been easily caused according to discrepancy between embedded anchor flukes and the towing direction due to the change in wind direction, rather than the wind speed. This discrepancy, thus, should be considered when anchoring. This test vessel with a small radius of curvature of the stem is relatively vulnerable to the influence of wind direction and wind speed, so it is easy to cause a decrease in the holding power due to an increase in the rate of turn. When the current speed is greater than or equal to 1 knot, the range of the rate of turn is reduced resulting in a relatively increased holding power. In addition, during the swing, the tension of the chain was high according to the angular velocity change of heading at three-quarters of the swing length rather than the left and right ends.

Tension calculation on trash curtain in current (흐름중 부유쓰레기 차단막에 작용하는 장력계산)

  • Cho I.H;Choi H.S.;Yu J.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.3
    • /
    • pp.65-73
    • /
    • 2001
  • Herein, a theoretical method based on the catenary model Is applied to obtain the tension and drag forces acting on the trash curtain which is deployed at river for the prevention of floating debris inflow into the ocean. Under the assumption that fluid drag is perpendicular to the trash curtain, the tension and drag forces are uniform along the trash curtain. As a numerical model, the trash curtain is moored both symmetrically and asymmetrically with respect to the flow. The tension and drag forces on the trash curtain are investigated according to the change of Bap ratio and inclined angle of the trash curtain. Numerical results show that tension parameter is increased as the gap ratio is increased. It is found that tension parameter is reduced as the inclined angle is increased in the case of asymmetric deployment. The numerical model is applied to the specific problem for the trash curtain (200m) deployed at the Tancheon on the Han river. The maximum inflow velocity that anchor system can endure is 2m/sec.

  • PDF

Arthroscopic All-Inside Repair of Medial Meniscus Root Tear Using 18 Gauge Spinal Needle and Suture Anchor -A Report of Surgical Technique- (18 Gauge 척수 주사 바늘과 Suture Anchor를 이용한 내측 반월상 연골 경골 후방 부착부 파열의 관절경적 All-Inside 봉합술 - 수술 술기 보고 -)

  • Kim, Jong-Min;Jung, Sung-Hoon;Lee, Sang-Ho;Park, Byeong-Mun;Lee, Kil-Hyeong;Jeon, Ho-Seung
    • Journal of the Korean Arthroscopy Society
    • /
    • v.16 no.1
    • /
    • pp.66-71
    • /
    • 2012
  • The posterior root of medial meniscus maintains normal meniscal function by circumferential hoop tension and prevents extrusion of meniscus and progression of osteoarthritis. A complete tear of posterior root of medial meniscus leads to loss of hoop tension, it is important to repair it and preserve the function of the medial meniscus. Recently, a variety of arthroscopic assisted reduction and repair techniques have been used. We create an arthroscopic all-inside suture technique using a 18 gauge spinal needle and suture anchor that is easier and more convenient compared with the previous techniques. So we report this technique with a review of current literatures.

  • PDF