• Title/Summary/Keyword: Tensile-shear test

Search Result 512, Processing Time 0.036 seconds

Experimental Study on Shear Behavior of HPFRCC Beam (HPFRCC Beam 부재의 전단거동에 관한 실험적 연구)

  • Song, Tae-Hwa;Lee, Seong-Cheol;Shin, Kyung-Joon;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.289-292
    • /
    • 2006
  • In this research, bending shear test of HPFRCC beams is conducted to obtain the shear strength of HPFRCC beams. Parameters are ratio of volume percentage of fibers. Also, the uniaxial tensile test of HPFRCC is conducted to obtain the tensile cracking stress of each parameters. From the uniaxial tensile test result, the shear strength of HPFRCC beams can be calculated by using the preexisting shear analysis model. Then, the shear strengths of bending shear test result and analysis result are compared.

  • PDF

Shear Transfer Strength Evaluation for Ultra-High Performance Fiber Reinforced Concrete (강섬유 보강 초고성능 콘크리트의 전단 전달 모델)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.69-77
    • /
    • 2015
  • Ultra High Performance Fiber Reinforced Concrete (UHPFRC) has a outstanding tensile hardening behaviour after a crack develops, which gives ductility to structures. Existing shear strength model for fiber reinforced concrete is entirely based on crack opening behavior(mode I) which comes from flexural-shear failure, not considering shear-slip behavior(mode II). To find out the mode I and mode II behavior on a crack in UHPFRC simultaneously, maximum shear strength of cracked UHPFRC is investigated from twenty-four push-off test results. The shear stress on a crack is derived as variable of initial crack width and fiber volume ratio. Test results show that shear slippage is proportional to crack opening, which leads to relationship between shear transfer strength and crack width. Based on the test results a hypothesis is proposed for the physical mechanics of shear transfer in UHPFRC by tensile hardening behavior in stead of aggregate interlocking in reinforced concrete. Shear transfer strength based on tensile hardening behavior in UHPFRC is suggested and this suggestion was verified by comparing direct tensile test results and push-off test results.

Shear and tensile behaviors of headed stud connectors in double skin composite shear wall

  • Yan, Jia-Bao;Wang, Zhe;Wang, Tao;Wang, Xiao-Ting
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.759-769
    • /
    • 2018
  • This paper studies shear and tensile behaviors of headed stud connectors in double skin composite (DSC) structure. Firstly, 11 push-out tests and 11 tensile tests were performed to investigate the ultimate shear and tensile behaviors of headed stud in DSC shear wall, respectively. The main parameters investigated in this test program were height and layout of headed stud connectors. The test results reported the representative failure modes of headed studs in DSC structures subjected to shear and tension. The shear-slip and tension-elongation behaviors of headed studs in DSC structures were also reported. Influences of different parameters on these shear-slip and tension-elongation behaviors of headed studs were discussed and analyzed. Analytical models were also developed to predict the ultimate shear and tensile resistances of headed stud connectors in DSC shear walls. The developed analytical model incorporated the influence of the dense layout of headed studs in DSC shear walls. The validations of analytical predictions against 22 test results confirmed the accuracy of developed analytical models.

Quality Evaluation of Resistance Spot Welding using Acoustic Emission (음향방출을 이용한 저항 점용접의 용접 품질평가)

  • Jo Dae-Hee;Rhee Zhang-Kyu;Park Sung-Oan;Cho Jin-Ho;Kim Bong-Gag;Woo Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.98-104
    • /
    • 2006
  • In this paper, for the purpose of investigation the acoustic emission(AE) behaviors during resistance spot welding process and tension test of spec steels. As the results present the resistance spot welding method that can get suitable welding qualities or structural integrity estimating method. The resistance spot welding process consists of several stages: set-down of the electrodes; squeeze; current flow; forging; hold time; and lift-off. Various types of AE signals are produced during each of these stages. For tensile-shear test and cross tensile test in resistance spot welded specimens, fracture pa 야 ems are produced: tear fracture; shear fracture; and plug fracture. Tensile-shear specimens strength appeared higher than cross tensile specimens one. In case of tensile-shear specimen happened tear fracture that crack happens in most lower plate. Also, in case of cross tensile specimens, upper plate and lower plate are detached perfect fracture was exposed increases a little as acting force is lower than ordinary welding condition. Therefore, the structure which is combined by resistance spot welding confirmed that welding design must attain so that shear stress may can interact mainly.

A Study on Bond Strength between Fiber Sheet and Concrete for Concrete Surface Preparation and Heating Condition (콘크리트 표면처리와 가열조건에 따른 섬유쉬트와 콘크리트의 부착강도에 관한 연구)

  • Ahn, Sang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.201-207
    • /
    • 2002
  • An advanced fiber sheet has been widely used for strengthening of the concrete structures due to its excellent properties such as high strength and light weight. Bond strength is very important in strengthening the concrete structures using an advanced fiber sheet. This research examines the bond behavior between fiber sheet and concrete, investigates the bond strength by the direct pull-out test and the tensile-shear test. To obtain the tensile-shear strength a double-face shear type bond test is conducted. The primary test variables are the types of concrete surface roughness (disk-grinding/chipping) and retrofitting methods (bonding/injection). Thirty specimens were tested to evaluate the bond strength. It is shown that the average bond strength between fiber sheet and concrete by the direct pull-out test and the tensile-shear test is $22.3{\sim}23.1kgf/cm^2$ $17.92{\sim}19.75kgf/cm^2$, respectively.

Destructive testing of adhesively bonded joints under static tensile loading

  • Ochsner, A.;Gegner, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.22-36
    • /
    • 2004
  • Several in-situ testing methods of adhesively bonded joints under static short-time tensile loading are critically analyzed in terms of experimental procedure and data evaluation. Due to its rather homogeneous stress state across the glue line, the tensile-shear test with thick single-lap specimens, according to ISO 11003-2, has become the most important test process for the determination of realistic materials parameters. This basic method, which was improved in both, the experimental part by stepped adherends and easily attachable extensometers and the evaluation procedure by numeric substrate deformation correction and test simulation based on the finite element method (FEM), is therefore demonstrated by application to several kinds of adhesives and metallic adherends. Multi-axial load decreases the strength of a joint. This effect, which is illustrated by an experimental comparison, impedes the derivation of realistic mechanical characteristics from measured force-displacement curves. It is shown by numeric modeling that tensile-shear tests with thin plate substrates according to ISO 4587, which are widely used for quick industrial quality assurance, reveal an inhomogeneous stress state, especially because of relatively large adherend deformation. Complete experimental determination of the elastic properties of bonded joints requires independent measurement of at least two characteristics. As the thick-adherend tensile-shear test directly yields the shear modulus, the tensile butt-joint test according to ISO 6922 represents the most obvious complement of the test programme. Thus, validity of analytical correction formulae proposed in literature for the derivation of realistic materials characteristics is verified by numeric simulation. Moreover, the influence of the substrate deformation is examined and a FEM correction method introduced.

  • PDF

Bond behaviour at concrete-concrete interface with quantitative roughness tooth

  • Ayinde, Olawale O.;Wu, Erjun;Zhou, Guangdong
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.265-279
    • /
    • 2022
  • The roughness of substrate concrete interfaces before new concrete placement has a major effect on the interface bond behaviour. However, there are challenges associated with the consistency of the final roughness interface prepared using conventional roughness preparation methods which influences the interface bond performance. In this study, five quantitative interface roughness textures with different roughness tooth angles, depths, and tooth distribution were created to ensure consistency of interface roughness and to evaluate the bond behaviour at a precast and new concrete interface using the splitting tensile test, slant shear test, and double-shear test. In addition, smooth interface specimens and two separate the pitting interface roughness were also utilized. Obtained results indicate that the quantitative roughness has a very limited effect on the interface tensile bond strength if no extra micro-roughness or bonding agent is added at the interface. The roughness method however causes enhanced shear bond strength at the interface. Increased tooth depth improved both the tensile and shear bond strength of the interfaces, while the tooth distribution mainly influenced the shear bond strength. Major failure modes of the test specimens include interface failure, splitting cracks, and sliding failure, and are influenced by the tooth depth and tooth distribution. Furthermore, the interface properties were obtained and presented while a comparison between the different testing methods, in terms of bond strength, was performed.

Inplane Shear Material Properties of Unidirectional Carbon Fiber Reinforced Aluminum Laminate Composites (일 방향 탄소섬유 강화 알루미늄 적층 복합재료의 전단물성치 측정에 관한 연구)

  • Baek, Un-Cheol;Cho, Maeng-Hyo;Hawong, Jai-Sug
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2114-2121
    • /
    • 2002
  • In order to study the effects of oblique tabs on the in-plane shear properties of unidirectional carbon fiber reinforced aluminum laminate composites, the 10$^{\circ}$off-axis tensile test, the 45 $^{\circ}$off-axis tensile test and Iosipescu shear test were performed to determine the shear properties. Off-axis tension test was studied by using new oblique-shaped tabs proposed by Sun and $Chung^{(7)}$. Iosipescu shear test was studied by using modified Wyoming test fixture. The oblique tabs reduced remarkably end-constraint effects of off-axis specimens with a aspect ratio of about eight. The experimental results show that there is no significant difference between off-axis test results and those of Iosipescu shear test. The 45$^{\circ}$off-axis tensile tests are recommended for the determination of the shear properties of unidirectional carbon fiber reinforced aluminum laminated composites.

Rubber Shear Modulus Prediction of Finite Element Method (전산해석을 통한 고무전단강성 예측)

  • Kwon, Tae-Hoon;Kim, Byung-Hoon;Rho, Tae-Ho;Lee, Won-Bok;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.189-192
    • /
    • 2007
  • The qualification test of rubber product is consisted of uniaxial tensile, pure shear, biaxial and compression test. Uniaxial test result is used for material property of Finite Element Method. Comparison of uniaxial tensile test and analysis satisfied requirement. A study has qualificated result of QLS analysis model for material property of uniaxial test and shear modulus.

  • PDF

Adhesion Characteristics and Anatomic Scanning of Plywood Bonded by High Density Polyethylene (고밀도 폴리에틸렌으로 접착한 합판의 접착성질과 해부학적 관찰)

  • Han, Kie-Sun;Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.16-23
    • /
    • 1997
  • This study was carried out to discuss feasibility of high density polyethylene(HDPE) as a new substitute for the conventional adhesives in plywood manufacture. Plywood was composed of radiata pine(Pinus radiata) and Malas(Homallium feotidium) veneers and bonded by HDPE. Adhesion characteristics and anatomical scanning has been examined through tensile-shear strength test and scanning electron microscopy(SEM). The results are as follows; 1. Optimum loading quantity was 15g/$(30.3{\times}30.3)cm^2$, and tensile-shear strength increased with the increase of loading quantity. 2. Even at the hot pressing time of 1 minute, tensile-shear strength met the value of KS(over the 7.5kgf/$cm^2$), and tensile-shear strength increased with the increase of hot pressing time. 3. Plywood composed of veneer at moisture content of 19.6% showed similar tensile-shear strength to that at air conditioned moisture content of 11.4%. 4. Under the same condition of hot pressing time, tensile-shear strength of plywood bonded by HDPE met the KS value of boil and wet test and proved the same group as phenol formaldehyde adhesive. 5. HDPE films showed mechanical adhesion through penetration into the lathe check and ray of veneer.

  • PDF