• 제목/요약/키워드: Tensile performance

검색결과 1,482건 처리시간 0.025초

섬유 조합에 따른 초고성능 콘크리트의 인장거동 (Tensile Behavior of Ultra-High Performance Concrete According to Combination of Fibers)

  • 최정일;고경택;이방연
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권4호
    • /
    • pp.49-56
    • /
    • 2015
  • 초고성능 콘크리트는 높은 강도와 유동성을 갖는 우수한 재료 특성을 나타내는 콘크리트이다. 그러나 고연성 시멘트 복합체에 비하여 낮은 연성을 나타낸다. 이 연구에서는 강섬유와 마이크로섬유의 조합이 초고성능 콘크리트의 인장거동에 미치는 영향을 조사하였다. 이를 위하여 강섬유와 폴리에틸렌, 폴리비닐알코올, 현무암섬유 조합에 따라 4가지 초고성능 콘크리트 배합을 결정하였고, 인장거동을 평가하기 위하여 직접인장 실험을 수행하였다. 또한 마이크로섬유가 제조과정에서 의도하지 않은 과도한 기포를 생성하는지를 확인하기 위하여 밀도실험을 수행하였다. 실험결과 인장강도가 높은 폴리에틸렌섬유는 초고성능 콘크리트의 인장거동을 향상시키는데 효과적임을 확인하였고, 현무암섬유는 초고성능 콘크리트의 균열강도 및 인장강도를 증가시키는데 효과적임을 확인하였다. 또한 마이크로섬유가 의도하지 않은 기포를 생성하지 않는다는 것도 확인하였다.

초고성능 콘크리트의 인장거동 설계기준 정립에 관한 연구 (The Design Guidelines for the Tensile Behavior of Ultra-High Performance Concrete)

  • 강수태;조창빈;박종섭;박정준;류금성;김병석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.361-364
    • /
    • 2008
  • UHPC를 이용한 구조물 설계가 이루어지기 위해서는 우선적으로 재료의 역학적 거동 특성을 명확히 규명하여야 하며, 일반 콘크리트와 비교할 때 가장 큰 특징은 구조적으로 유효한 인장강도 및 인장거동이다. 따라서 UHPC를 활용한 적절한 설계가 되기 위해서는 특히 UHPC의 인장거동의 특성을 나타내는 구성모델의 확립이 무엇보다 중요하다고 말할 수 있다. 본 연구에서는 UHPC의 인장거동을 실험 및 해석을 통해 규명하고자 하였다. 프랑스 SETRA/AFGC에서 제시한 설계기준(안)과 일본 JSCE에서 제시한 초고강도 섬유보강 콘크리트의 설계 s시공지침(안)과의 비교를 통해 UHPC의 인장 연화거동과 인장응력-변형률 관계에 대해 합리적인 거동모델을 제시하였다.

  • PDF

강섬유 보강 초고성능 콘크리트의 전단 전달 모델 (Shear Transfer Strength Evaluation for Ultra-High Performance Fiber Reinforced Concrete)

  • 이지형;홍성걸
    • 한국공간구조학회논문집
    • /
    • 제15권2호
    • /
    • pp.69-77
    • /
    • 2015
  • Ultra High Performance Fiber Reinforced Concrete (UHPFRC) has a outstanding tensile hardening behaviour after a crack develops, which gives ductility to structures. Existing shear strength model for fiber reinforced concrete is entirely based on crack opening behavior(mode I) which comes from flexural-shear failure, not considering shear-slip behavior(mode II). To find out the mode I and mode II behavior on a crack in UHPFRC simultaneously, maximum shear strength of cracked UHPFRC is investigated from twenty-four push-off test results. The shear stress on a crack is derived as variable of initial crack width and fiber volume ratio. Test results show that shear slippage is proportional to crack opening, which leads to relationship between shear transfer strength and crack width. Based on the test results a hypothesis is proposed for the physical mechanics of shear transfer in UHPFRC by tensile hardening behavior in stead of aggregate interlocking in reinforced concrete. Shear transfer strength based on tensile hardening behavior in UHPFRC is suggested and this suggestion was verified by comparing direct tensile test results and push-off test results.

Tensile capacity of mortar-filled rectangular tube with various connection details

  • Kim, Chul-Goo;Kang, Su-Min;Eom, Tae-Sung;Baek, Jang-Woon
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.339-351
    • /
    • 2022
  • A mortar-filled rectangular hollow structural section (RHS) can increase a structural section property as well as a compressive buckling capacity of a RHS member. In this study, the tensile performance of newly developed mortar-filled RHS members was experimentally evaluated with various connection details. The major test parameters were the type of end connections, the thickness of cap plates and shear plates, the use of stud bolts, and penetrating bars. The test results showed that the welded T-end connection experienced a brittle weld fracture at the welded connection, whereas the tensile performance of the T-end connection was improved by additional stud bolts inserted into the mortar within the RHS tube. For the end connection using shear plates and penetrating stud bolts, ductile behavior of the RHS tube was achieved after yielding. The penetrating bars increased load carrying capacity of the RHS. Based on the analysis of the load transfer mechanism, the current design code and test results were compared to evaluate the tensile capacity of the RHS tube according to the connection details. Design considerations for the connections of the mortar-filled RHS tubes were also recommended.

Mechanical behavior of HPFRCC using limestone calcined clay cement (LC3) and oxygen plasma treated PP fibers

  • Sajjad Mirzamohammadi;Masoud Soltani
    • Structural Engineering and Mechanics
    • /
    • 제89권4호
    • /
    • pp.349-362
    • /
    • 2024
  • High-performance fiber-reinforced cement composites (HPFRCC) are new materials created and used to repair, strengthen, and improve the performance of different structural parts. When exposed to tensile tension, these materials show acceptable strain-hardening. All of the countries of the globe currently seem to have a need for these building materials. This study aims to create a low-carbon HPFRCC (high ductility) that is made from materials that are readily available locally which has the right mechanical qualities, especially an increase in tensile strain capacity and environmental compatibility. In order to do this, the effects of fiber volume percent (0%, 0.5%, 1%, and 2%), and determining the appropriate level, filler type (limestone powder and silica sand), cement type (ordinary Portland cement, and limestone calcined clay cement or LC3), matrix hardness, and fiber type (ordinary and oxygen plasma treated polypropylene fiber) were explored. Fibers were subjected to oxygen plasma treatment at several powers and periods (50 W and 200 W, 30, 120, and 300 seconds). The influence of the above listed factors on the samples' three-point bending and direct tensile strength test results has been examined. The results showed that replacing ordinary Portland cement (OPC) with limestone calcined clay cement (LC3) in mixtures reduces the compressive strength, and increases the tensile strain capacity of the samples. Furthermore, using oxygen plasma treatment method (power 200 W and time 300 seconds) enhances the bonding of fibers with the matrix surface; thus, the tensile strain capacity of samples increased on average up to 70%.

매크로 섬유의 저혼입에 따른 콘크리트 포장의 역학적 특성 (Mechanical Properties of Concrete Pavement by Low Fraction of Macro Fiber)

  • 최성용;박영환;정우태;박종섭
    • 한국도로학회논문집
    • /
    • 제14권6호
    • /
    • pp.1-11
    • /
    • 2012
  • PURPOSES : The purpose of the study was to examine dynamic features of concrete after mixing a little macro fiber with small aspect ratio and long length utilized for bridge, tunnel and shotcrete for tensile performance and crack control in domestic/overseas countries with cement concrete pavement mix. METHODS : Coarse aggregates with small aspect ratio and macro fibers with maximum length of approximately 32 mm are introduced in small quantities in the mix proportions of concrete pavement so as to prevent loss of the workability. Then, this study intends to evaluate the applicability of macro fibers in the mix proportions of concrete pavement by examining the basic construction performance, as well as the change of toughness, the equivalent bending strength and the flexural toughness index caused by compression, bending, tension and the flexural stress-displacement curve. RESULTS : As the results, in each kind of macro fiber, polyvinyl alcohol fiber and steel fiber displayed a good performance. CONCLUSIONS : In 0.2 and 0.3% of fiber contents, it is appeared that polyvinyl alcohol fiber has a large effect on improvement of tensile performance and steel fiber on improvement of deforming performance of bending stress.

신구콘크리트 계면의 인장강도에 관한 실험 연구 (An Experimental Study on the Tensile Strength between O1d and New Concrete)

  • 양인환;김학수;조서경
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.433-438
    • /
    • 2001
  • In recent years, the construction methods of precast prestressed concrete beam bridges by using tendon have been increasingly proposed. The properties of flexural tensile strength between precast prestressed concrete beam and cast-in-place concrete is an important factor that affects the structural performance. This paper aims at evaluating the tensile strength between old and new concrete. Tensile strength gain, with age after placing new concrete was evaluated. Test results show that the tensile strength between old and new concrete is much smaller than that of monolithic concrete. Also, it is shown that the curing condition of concrete has the tremendous effect on tensile strength.

  • PDF

융합 필라멘트 제조 방식의 3D 프린팅을 이용한 X자 형상 내부 채움 패턴의 출력 옵션 변화에 따른 인장강도 연구 (A Study on Tensile Strength Dependent on Variation of Output Condition of the X-shape Infill Pattern using FFF-type 3D Printing)

  • 나두현;김호준;이용호
    • 소성∙가공
    • /
    • 제33권2호
    • /
    • pp.123-131
    • /
    • 2024
  • Plastic, the main material of FFF-type 3D printing, exhibits lower strength compared to metal. research aimed at increasing strength is needed for use in various industrial fields. This study analyzed three X-shape infill patterns(grid, lines, zigzag) with similar internal lattice structure. Moreover, tensile test considering weight and printing time was conducted based on the infill line multiplier and infill overlap percentage. The three X-shape infill patterns(grid, lines, zigzag) showed differences in nozzle paths, material usage and printing time. When infill line multiplier increased, there was a proportional increase in tensile strength/weight and tensile strength/printing time. In terms of infill overlap percentage, the grid pattern at 50% and the zigzag and lines patterns at 75% demonstrated the most efficient performance.

접착식 콘크리트 덧씌우기 포장의 부착거동 연구 (A Study on the Bond-Behavior of Bonded Concrete Overlays)

  • 김영규;이승우;한승환
    • 한국도로학회논문집
    • /
    • 제14권5호
    • /
    • pp.31-45
    • /
    • 2012
  • PURPOSES: In Korea, rapid maintenance of distressed concrete pavement is required to prevent traffic jam of the highway. Asphalt concrete overlay has been used as a general maintenance method of construction for aged concrete pavement. AC overlay on existing concrete pavements experience various early distresses such as reflection crack, pothole and rutting, due to different physical characteristics between asphalt overlay and existing concrete pavement. Bonded concrete overlay(BCO) is a good alternative since it has advantages that can reduce various distresses during the service life since overlay material has similar properties with existing concrete pavements. Recently, BCO which uses the ultra rapid harding cement has been applied for maintenance of highway. BCO has advantage of structural performance since it does monolithic behave with existing pavement. Therefore, it is important to have a suitable bond strength criteria for securing performance of BCO. Bond strength criteria should be larger than normal tensile stress and horizontal shear stress occurred by traffic and environmental loading at bond interface. Normal tensile stress and horizontal shear stress need to estimated for the establishment of practical bond strength criteria. METHODS: This study aimed to estimate the bond stresses at the interface of BCO using the three dimensional finite element analysis. RESULTS: As a result of this study, major failure mode and maximum bond stress are evaluated through the analysis of normal tensile stress and horizontal shear stress for various traffic and environmental load conditions. CONCLUSIONS: It was known that normal tensile stresses are dominated by environmental loading, and, horizontal shear stresses are dominated by traffic loading. In addition, bond failure occurred by both of normal tensile stresses and horizontal shear stresses; however, normal tensile stresses are predominated over horizontal shear stresses.

강섬유 보강 초고성능 콘크리트의 탄성계수 및 인장강도 평가 (An Evaluation of Elasticity Modulus and Tensile Strength of Ultra High Performance Concrete)

  • 류금성;유성원
    • 한국건설순환자원학회논문집
    • /
    • 제3권3호
    • /
    • pp.206-211
    • /
    • 2015
  • 최근에 활발히 연구되어지고 있는 UHPC의 경우, 강섬유 혼입량에 의해서 인장강도가 절대적으로 영향을 받는 이유로 본 논문에서는 압축강도, 강섬유량 등을 변수로 하여 압축강도, 탄성계수 및 인장강도 등을 실험적으로 구한 후, 그 결과를 분석하였다. 실험결과에 의하면, 압축강도와 탄성계수 및 인장강도는 비례관계로 상당한 상관성을 가지는 것으로 나타났으며, 섬유혼입률에 따른 압축강도와 인장강도의 관계 역시는 비례관계의 상관성을 가지는 것으로 나타났다. 탄성계수의 경우, 실험결과와 현행 국내 설계기준 식의 차이는 그다지 크지 않은 것으로 나타나, 기존의 설계기준 식을 준용하여도 UHPC 탄성계수 평가에는 큰 문제가 없을 것으로 예상된다. 한편 인장강도의 경우, 현행 설계기준에서 제시되지 않은 이유로 비선형 회귀분석을 실시하여 섬유혼입률을 고려한 인장강도 식을 제안하였으며, 제안된 식은 좋은 상관성을 보이는 것으로 나타났다.