• Title/Summary/Keyword: Tensile performance

Search Result 1,511, Processing Time 0.028 seconds

An Experimental Study on the Degradations of Material Properties of Vinylester/FRP Reinforcing Bars under Accelerated Alkaline Condition (급속 알칼리 환경하에서의 비닐에스터/FRP 보강근의 재료성능 저하 특성에 관한 실험적 연구)

  • Oh, Hongseob;Kim, Younghwan;Jang, Naksup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.51-59
    • /
    • 2019
  • There is increasingly more research focusing on the application of FRP reinforcing bars as an alternative material for steel reinforcing bars, but most such research look at short term behavior of FRP reinforced structures. In this study, the microscopic analysis and tensile behavior of Basalt and Glass FRP bars under freezing-thawing and alkaline conditions were experimentally evaluated. After 100 cycles of the freezing and thawing, the tensile strength and elastic modulus of FRP bars decreased by about 5%. In the case of microstructure of FRP bars during the initial 20 days, no significant damages of FRP bar sections were found under $20^{\circ}C$ alkaline solution; however, the specimens immersed in $60^{\circ}C$ alkaline solution were found to experience resin dissolution, fiber damage and the separation of the resin-fiber interface. In the alkaline environment, the strength decrease of about 10% occurred in the environment at $20^{\circ}C$ for 100 days, but the tensile strength of FRPs exposed for 500 days decreased by 50%. At temperature of $40^{\circ}C$ and $60^{\circ}C$, an abrupt decrease in the strength was observed at 50 and 100 days. Especially, the tensile strength decrease of Basalt fiber Reinforced Polymer bars showed more severe degradation due to the damage caused by dissolution of resin matrix and fiber swelling in alkaline solution. Therefore, in order to improve the long-term performance of the surface braided FRPr reinforcing bars, surface treatment is required to ensure alkali resistance.

Bending performance evaluation of high strength and seismic purpose reinforcing bars (고강도 및 내진용 철근의 굽힘성능 평가)

  • Kim, Hee-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.492-498
    • /
    • 2017
  • This study examined the bending performance of high strength and seismic purpose reinforcing bars experimentally with various parameters. For the experimental approach on the bending performance, the specimens were prepared with parameters, such as steel grades, diameters of reinforcing bars, and bending angles of reinforcing bars. Tensile strength tests on the reinforcing bars, the bending tests and re-bending tests, and the second tensile strength tests on the re-bended reinforcing bars were conducted. According to the test results on high strength and seismic purpose reinforcing bars, defects did not appear when the yield strength of the reinforcing bar was 500 MPa or less and the diameter was D13 or less, even when the first bending process was performed with a $135^{\circ}$ bending angle and a $2d_b$ inner radius. The bending performance decreased asthe strength and diameter of the reinforcing bars was increased. In addition, there was no significant difference between the general reinforcing bars and seismic purpose-reinforcing bars.

Evaluation on the Impact Resistant Performance of Fiber Reinforced Concrete by High-Velocity Projectile and Contacted Explosion (고속비상체 충돌 및 접촉폭발에 의한 섬유보강 콘크리트의 내충격 성능 평가)

  • Nam, Jeong-Soo;Kim, Hong-Seop;Lee, In-Cheol;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.107-114
    • /
    • 2013
  • In this study we experimentally evaluated an impact resistant performance of fiber reinforced concrete in the moment of explosion by high-velocity projectile with emulsion explosive. To assess the impact resistance, we conducted the impact test of high-velocity projectile which reaches an impact speed of 350 m/s and the experiment of contact exploding emulsion explosive. As a result, bending and tensile performance depending on type of PVA, PE fiber (polyvinyl alcohol fiber, polyethylene fiber) and steel fiber affects destruction of rear side in the form of spalling. Destroying the backside of the concrete compressive strength compared to suppress the bending and tensile performance is affected. In addition, the experiment shows that the destruction patterns of concrete specimen producted by high velocity impact and contact explosion are significantly similar. Therefore, it is possible to predict the destruction patterns of specimens in the situation of contact explosion by high-velocity projectile.

Seismic Performance of Rib Plate H Beam to Column Connections (리브로 보강된 기둥-보 접합부의 내진성능 평가)

  • Kim, Sung-Yong;Shin, Chang-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.9-16
    • /
    • 2006
  • The moment resisting frame has been well-known as it had very excellent seismic performance, and it has been widely used and constructed in the design of a lot of buildings. However, the moment resisting frame system did not exert the seismic performance during the earthquake in Northridge and Kobe sufficiently, and it produced the crack or brittle fracture on the joint. this study was to ]m tests with the full-scale test subject as parameters of existence of H-beam web high tensile bolt shearing joint and reinforcement of H-flange rib. This researcher was to anticipate the decrease of number of high tensile bolts and the improvement of workability through the double shear joint by the experiment, and improve the seismic performance through the reinforcement of rib plate. In addition, this study was to prevent the brittle fracture by the stress concentration through the non scallop.

Develop a sustainable wet shotcrete for tunnel lining using industrial waste: a field experiment and simulation approach

  • Jinkun Sun;Rita Yi Man Li;Lindong Li;Chenxi Deng;Shuangshi Ma;Liyun Zeng
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.333-348
    • /
    • 2023
  • Fast infrastructure development boosts the demand for shotcrete. Despite sand and stone being the most common coarse and fine aggregates for shotcrete, excessive exploration of these materials challenges the ecological environment. This study utilized an industrial solid waste, high-titanium heavy slag, blended with steel fibers to form Wet Shotcrete of Steel Fiber-reinforced High-Titanium Heavy Slag (WSSFHTHS). It investigated its workability, shotcrete performance and mechanical properties under different water-to-cement ratios, fly ash content, superplasticizer dosage, and steel fiber content. The tunnel excavation and support were investigated by conducting finite element numerical simulation analysis and was used in 3 tunnel lining pipes in Zhonggouwan tailing pond. The major findings are as follows: (1) The water-to-cement ratio (w/c ratio) significantly impacted the compressive strength of WSSFHTHS. The highest 28-day compressive strength of 60 MPa was achieved when the w/c ratio was 0.38; (2) Adding fly ash improved the workability and shotcrete performance and strength development of WSSFHTHS. The best anti-permeability performance was achieved when the fly ash constituted 15%, with the lowest permeability coefficient of 4.596 × 10-11 cm/s; (3) The optimum superplasticizer dosage for WSSFHTHS is 0.8%. It provided the best workability and shotcrete performance. Excessive dosage resulted in water bleeding and poor aggregate encapsulation, while insufficient dosage decreased flowability and adversely affected shotcrete performance; (4) The dosage of steel fibers significantly impacted the flexural and tensile strength of WSSFHTHS. When the steel fiber dosage was 45 kg/m3, the 28-day flexural and tensile strengths were 8.95 MPa and 6.15 MPa, respectively; (5) By integrating existing shotcrete techniques, the optimal lining thickness was 80 mm for WSSFHTHS per simulation. The results revealed that after using WSSFHTHS, the displacement of the tunnel surrounding the rock significantly improved, with no cracks or hollows, similar to the simulation results.

Seismic Performance Improvement of Concrete Gravity Dam by Post-tensioned Anchors (앵커공법을 적용한 기존 콘크리트 중력식 댐의 내진성능 보강방안)

  • Kim, Yongon;Kim, Se-Il;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.49-53
    • /
    • 2013
  • This paper describes the assessment of seismic performance of the concrete gravity dam seismically reinforced by post-tensioned anchors. In order to evaluate the seismic performance, the response spectrum analyses have been carried out for 7 different configurations of the post-tensioned anchors, and then their performance improvement in the maximum tensile and compressive stresses is compared to each other. The comparative results demonstrate that the layout of the post-tensioned anchors strongly influences the seismic performance of the concrete gravity dam. In this study, the slightly-inclined vertical anchorage system shows the largest improvement on the overall performance of the seismically-excited concrete gravity dam.

Design and Construction of Sunyudo Pedestrian Bridge Using Ultra-High Performance Concrete, Ductal (초고강도 콘크리트 Ductal을 이용한 선유도연결 보행전용교량의 설계와 시공)

  • 변윤주;허석범;정의환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.607-614
    • /
    • 2001
  • This paper describes the design and construction of main Arch bridge using Ultra-high performance concrete, Ductal in the Sunyudo pedestrian bridge project. Ductal is a new family of cementing materials with remarkable properties. Its mechanical characteristics reach unique values, with compressive strength in industrial use of 180 to 230 MPa and bending tensile strength of 50 to 80 MPa. By the use of Ductal, main Arch bridge crossing the Han-river is designed to the span 120m-long with optimized $\pi$ shape section.

  • PDF

Evaluation of Flexural Performance of RC Beams Using Polymer Cementitous Mortar (폴리머시멘트 모르터를 이용한 RC 보의 휨 성능평가)

  • 양동석;고원준;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.479-484
    • /
    • 2000
  • An experimental study to investigate the structural performance of reinforced concrete beams repaired by Polymer Cementitous Mortar in the tension zone is described. Preliminary trials with beams in which beams tensile reinforcing steel was exposed over 100%, 80% and 60% of their length have led to tests on $5\times25$cm beams over a 200cm span to examine the experimental parameter. Attention is concentrated upon overall bending capacity, deflection and crack development of repaired beams.

  • PDF

Airtightness performance evaluation of ultra-high performance concrete using polymer coating materials (그래핀을 활용한 폴리머 도막재료의 물리적 특성 평가)

  • Lee, Hyun Seung;Kim, Kang Min;Yoon, Seob;Seo, Tae Suk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.257-258
    • /
    • 2023
  • In this study, it was conducted to improve the physical properties of VAE polymer matrix used as a coating material. A nanocomposite was manufactured using graphene as a reinforcing agent based on a VAE matrix. As a result, improvements in tensile strength, adhesion strength, and porosity were confirmed.

  • PDF

Experimental Study on Long-Term Performance Evaluation of Geosynthetic Strip Reinforcement (띠형 섬유보강재의 장기성능 평가를 위한 실험적 연구)

  • Lee, Kwang-Wu;Kim, Ju-Hyeung;Cho, Sam-Deok;Han, Jung-Geun;Yoon, Won-Il;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.75-84
    • /
    • 2010
  • In this study, the long-term performance tests, which have extensibility, creep deformation, installation resistance and durability characteristic, is conducted to apply geosynthetic strip in field. The strength reduction factors using the test results are evaluated in order to calculate long-term design tensile strength. First, the creep deformation was evaluated by both the stepped isothermal method(SIM) and the time-temperature superposition(TTS) method. The creep reduction factor is reasonable to apply 1.6. Second, the result of installation damage test had little damage of yarn, which affected strength of reinforcement. Therefore, it can be analyzed that the installation damage of geosynthetic strip has little effect of long-term design tensile strength. Finally, the durability reduction factor considering chemical, biological and outdoor exposure resistance is reasonable to apply 1.1, which is considered the stability and economic efficiency of reinforced earth wall using geosynthetic strip.

  • PDF