• Title/Summary/Keyword: Tensile mechanical

Search Result 5,152, Processing Time 0.04 seconds

On Mechanical Properties of Dissimilar Friction Welded Materials (이종 마찰용접재의 기계적특성에 관하여)

  • Kwon, Sang-Woo;Jung, Won-Taek;Choi, Dae-Gum;Kong, Yu-Sik;Kim, Yong-Sik;Kim, Seon-Jin
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.158-162
    • /
    • 2003
  • A study on friction welding of chrome molybedenum steel(SCM440) to carbon steel(S45C) is examined experimentally through tensile test, hardness test. So, this paper deals with optimizing the welding conditions and analyzing various mechanical properties about friction welds of SCM440 to S45C steel. The tensile strength of the friction welded joint was increased up to 100% of the S45C base matal under the condition of all heating time. Optimal welding conditions were n=2,000(rpm), $P_{1}=60(MPa)$, $P_{2}=100(MPa)$, $t_{1}=4(s)$, $t_{2}=5(s)$ when the total upset length is 5.7(mm).

  • PDF

Processing and mechanical property evaluation of maize fiber reinforced green composites

  • Dauda, Mohammed;Yoshiba, Masayuki;Miura, Kazuhiro;Takahashi, Satoru
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.335-347
    • /
    • 2007
  • Green composites composed of long maize fibers and poly $\varepsilon$-caprolactone (PCL) biodegradable polyester matrix were manufactured by the thermo-mechanical processing termed as 'Sequential Molding and Forming Process' that was developed previously by the authors' research group. A variety of processing parameters such as fiber area fraction, molding temperature and forming pressure were systematically controlled and their influence on the tensile properties was investigated. It was revealed that both tensile strength and elastic modulus of the composites increase steadily depending on the increase in fiber area fraction, suggesting a general conformity to the rule of mixtures (ROM), particularly up to 55% fiber area fraction. The improvement in tensile properties was found to be closely related to the good interfacial adhesion between the fiber and polymer matrix, and was observed to be more pronounced under the optimum processing condition of $130^{\circ}C$ molding temperature and 10 MPa forming pressure. However, processing out of the optimum condition results in a deterioration in properties, mostly fiber and/or matrix degradation together with their interfacial defect as a consequence of the thermal or mechanical damages. On the basis of microstructural observation, the cause of strength degradation and its countermeasure to provide a feasible composite design are discussed in relation to the optimized process conditions.

Evaluation of mechanical properties of polylactic acid and photopolymer resin processed by 3D printer fused deposition modeling and digital light processing at cryogenic temperature

  • Richard G. Pascua;Gellieca Dullas;SangHeon Lee;Hyung-Seop Shin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.2
    • /
    • pp.19-23
    • /
    • 2024
  • 3D printing has the advantage of being able to process various types of parts by layering materials. In addition to these advantages, 3D printing technology allows models to be processed quickly without any special work that can be used in different fields to produce workpieces for various purposes and shapes. This paper deals to not only increase the utilization of 3D printing technology, but also to revitalize 3D printing technology in applications that require similar cryogenic environments. The goal of this study is to identify the mechanical properties of polylactic acid and photopolymer resin processed by Fused Deposition Modeling (FDM) and Digital Light Processing (DLP) respectively. The entire process is meticulously examined, starting from getting the thermal contraction using an extensometer. A uniaxial tensile test is employed, which enables to obtain the mechanical properties of the samples at both room temperature (RT) and cryogenic temperature of 77 K. As the results, photopolymer resin exhibited higher tensile properties than polylactic acid at RT. However, at cryogenic temperatures (77 K), the photopolymer resin became brittle and failure occurred due to thermal contraction, while polylactic acid demonstrated superior tensile properties. Therefore, polylactic acid is more suitable for lower temperatures.

Development of Tensile System (초정밀 인장기 개발)

  • Bae, J.I.;Lee, D.C.;Park, J.W.;Kim, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.768-769
    • /
    • 1999
  • In industry and engineering, the tensile measurement of single crystal metal material such as the uniform change, surface structure and the tensile torque of the material is not easy to obtain by current the tensile measurement methods. In this paper, we have implemented a tensile system which can acquire tensile information in real time.

  • PDF

A Study on the Mechanical Properties of Additive Manufactured Polymer Materials (적층조형 폴리머 재료의 기계적 물성 연구)

  • Kim, Dongbum;Lee, In Hwan;Cho, Hae Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.773-780
    • /
    • 2015
  • Traditionally, additive manufacturing (AM) technology has been used to fabricate prototypes in the early development phase of a product. This technology is being applied to release manufacturing of a product because of its low cost and fast fabrication. AM technology is a process of joining materials to fabricate a product from the 3D CAD data in a layer-by-layer manner. The orientation of a layer during manufacturing can affect the mechanical properties of the product because of its anisotropy. In this paper, tensile testing of polymer-based specimens were built with a typical AM process (FDM, PolyJet and SLA) to study the mechanical properties of the AM materials. The ASTM D 638 tensile testing standard was followed for building the specimens. The mechanical properties of the specimens were determined on the basis of stress-strain curves formed by tensile tests. In addition, the fracture surfaces of the specimens were observed by SEM to analyze the results.

Mechanical Performance and Stress-Strain Relationships for Grouted Splices Under Tensile and Cyclic Loadings

  • Lin, Feng;Wu, Xiaobao
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.435-450
    • /
    • 2016
  • Experimental studies were conducted on 36 grouted splices to investigate their mechanical performance under four loading schemes: (1) incremental tensile loading, (2) repeated tensile loading, (3) cyclic loading at high stress, and (4) cyclic loading at large strain. Load-deformation responses of the grouted splices under cyclic loadings were featured with pinching effect and stiffness degradation compared to those responses under tensile loadings. The shape of the hysteresis loops of load-deformation curves was similar to that under incremental tensile loading. For the purpose of structural analysis, stress-strain relationships were presented for grouted splices under various loadings.

Injection Mold with Cavity Pressure/Temperature Sensors for Standard Tensile Test Specimen (내압력.온도센서를 갖는 표준 인장시편용 사출금형)

  • Lee, Do-Myoung;Han, Byoung-Kee;Lee, Sung-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.84-90
    • /
    • 2007
  • In this study, design and manufacturing of plastic injection mold with cavity pressure/temperature sensors were performed fur tensile test specimen. International standard system for plastic tensile specimen was applied to design an injection molding system. Cavity pressure and temperature sensors were placed on the side of fixed platen of the injection mold to prevent them from external impact damage. Injection molding experiments with variations of injection speed and melt temperature were performed and then tensile test of the manufactured polycarbonate specimens was also performed. It was shown that injection molding processing parameters can have effect on the mechanical properties of the plastic injection molded part.

Effect of Die Casting Condition on the Mechanical Properties of AZ91HP Mg Alloy (AZ91HP 마그네슘합금의 기계적성질에 미치는 다이캐스팅 조건의 영향)

  • Ahn, Yong-Sik;Klein, F.
    • Journal of Korea Foundry Society
    • /
    • v.22 no.4
    • /
    • pp.155-159
    • /
    • 2002
  • Magnesium alloys have high strength to weight ratio and are extremely attractive for applications in transport industry. Most of structural magnesium alloys are manufactured by die casting process. The tensile properties of AZ91HP magnesium alloy were investigated after die casting under various die casting conditions. After die casting by using cold chamber machine, the volume porosity of specimens was examined with density method. With the increase of the volume porosity of specimens, both the tensile strength and elongation were significantly decreased, however the 0.2% offset strength was almost independent of the amount of porosity. With the increase of crystal pressure from 500 to 900 bar during die casting, the volume porosity was decreased, which resulted in the increase of the tensile strength. The mould temperature within the range of $150{\sim}250^{\circ}C$ has not influenced the microstructure with the eutectic phase and tensile properties of specimens. The tensile strength was the highest at 90m/sec of gate speed.

W/C Ratio Effects on Mechanical Properties of High Performance hybrid SC and PE Fibers Reinforced Cement Composites (물-시멘트비에 따른 하이브리드 섬유보강 고인성 시멘트 복합체의 역학적 특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Cheon, Esther;Lee, Sang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.118-121
    • /
    • 2006
  • The research reported here is concerned with the effects of the fiber combination condition and water/cement ratio on the mechanical properties of high performance fiber-reinforced cementitious composites(HPFRCC). An experimental investigation of the behavior of steel cords(SC) and SC and Polyethylene(PE) hybrid fiber reinforced cementitious material under compressive and tensile loading is presented. In this experimental research, the tensile and compressive strength and strain capacity of HPFRCC were selected using the cylindrical specimens. The results show that W/C ratio is a significant effect factor on the compressive and tensile performance of HPFRCC. The envelope curve concept applies to hybrid fiber-reinforced cementitious composites in tension just as it does to compressive stress-strain curve of fiber-reinforced cement composites. For practical purposes, the tensile envelope curve may be taken to be the same as the monotonic tensile stress-strain curve.

  • PDF

A Study on the Tensile Property of Ring Specimen Having Gauge Length (평행부를 갖는 링 시험편의 인장특성 고찰)

  • Bae Bong-Kook;Koo Jae-Mean;Seok Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.555-562
    • /
    • 2005
  • In this study, we tried to establish the method of evaluating the tensile properties of the ring specimen of Arsene which have gauge length. In this result, we verified the availability of central piece. We made ring specimens and devices such as central piece, pins, and clevises. A proper tensile speed was determined by pre-test. The result of main test was calibrated and compared with the result of FEM. To obtain the tensile properties from the ring test result, we observed two relationships: one is strain-displacement and the other is load ratio-displacement. The tensile properties could be evaluated by using these relationships.