• Title/Summary/Keyword: Tendon force

Search Result 210, Processing Time 0.026 seconds

Ultimate Flexural Strength Evaluation of Construction Joints in PSC Bridge Girders (PSC 교량 부재의 시공이음부의 극한 휨강도 평가)

  • 채성태;오병환;김병석;이상희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.279-284
    • /
    • 2002
  • Prestressed concrete(PSC) bridge structures with a number of continuous spans has been segmentally built in many countries. These methods include incremental launching method, movable scaffolding method, full staging method and balanced cantilever method. In these segmentally constructed prestressed concrete bridges, many construction joints exist and these construction joints are weak points in PSC bridges. The prestress force can be introduced prestress force continuously through the construction joints of PSC bridge superstructure using tendon couplers. The main objective of this study is to evaluate the structural behavior and ultimate flexural strength of construction joints in PSC girder bridge members. To this end, a comprehensive experimental program has been set up and a series of full-scale tests have been performed. Ultimate flexural strength of construction joint in PSC members with tendon couplers is decreased by approximately 10% for non-coupled members.

  • PDF

Magnetic Hysteresis Monitoring according to the Change of Tensile Force and Steel Class of PS Tendons (PS 텐던 강종별 긴장력 변화에 따른 자기이력 모니터링)

  • Kim, Junkyeong;Park, Seunghee;Lee, Hwanwoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.115-120
    • /
    • 2018
  • This paper introduces a magnetic hysteresis monitoring result to apply an EM sensing technique for estimating tensile force of PSC girder to various class of PS tendon. The tensile force of PS tendon is a very important factor in the performance evaluation of PSC bridges. However, in this time, the tensile force was just measured only during construction and it does not monitored after construction. To measure the tensile force of PS tendons, the EM sensing based NDT method was developed but the proposed method cannot be applied to various class of PS tendons. Thus this study performed the magnetic hysteresis measurement according to the tensile force for class B, C and D PS tendons through experimental study. The specific tensile forces(50, 100, 150, 180kN) were induced to the each specimens and the magnetic hysteresis curve was measured at each point. The permeability of specimens were gradually decreased according to increase of tensile force. Especially, the slopes of permeability variation of class B and C were similar while that of class D was different.

Structural Effect of HDPE Greased Strand Applying to Post-tensioning in Reactor Containment Building (피복텐던을 적용한 원자로건물 포스트텐셔닝 구조효율성 분석)

  • Park, Jong-Hyok;Bang, Chang-Joon;Kim, Jwa-Young;Lim, Sang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.167-168
    • /
    • 2012
  • Analysis on structural effects which are reduction of friction coefficient and increase of tendon area by HDPE greased and large size strand in post-tensioning system of reactor containment building was carried out. Effective ratio of tendon force increases 67% to 83% by HDPE greased strand and vertical, horizontal internal section forces increased maximum 51%, 41% respectively. Tendon quantity could be reduced 30% by large size and HDPE greased strand that can maintain safety of ultimate internal pressure same as at present.

  • PDF

Compensation of temperature effect on impedance responses of PZT interface for prestress-loss monitoring in PSC girders

  • Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.881-901
    • /
    • 2016
  • In this study, a method to compensate the effect of temperature variation on impedance responses which are used for prestress-loss monitoring in prestressed concrete (PSC) girders is presented. Firstly, an impedance-based technique using a mountable lead-zirconate-titanate (PZT) interface is presented for prestress-loss monitoring in the local tendon-anchorage member. Secondly, a cross-correlation-based algorithm to compensate the effect of temperature variation in the impedance signatures is outlined. Thirdly, lab-scale experiments are performed on a PSC girder instrumented with a mountable PZT interface at the tendon-anchorage. A series of temperature variation and prestress-loss events are simulated for the lab-scale PSC girder. Finally, the feasibility of the proposed method is experimentally verified for prestress-loss monitoring in the PSC girder under temperature-varying conditions and prestress-loss events.

Development of a Model for the Estimation of Knee Joint Moment at MVC (MVC 상태에서의 무릎관절 모멘트 추정을 위한 모델 개발)

  • Nam, Yoon-Su;Lee, Woo-Eun
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.222-230
    • /
    • 2008
  • This paper introduces a method of estimating the knee joint moment developed during MVC. By combining the Hill-type muscle model and analytic results on moment arm and musculotendon length change as a function of hip and knee joint angle, the knee joint moment at a specific knee joint angle during MVC is determined. Many differences between the estimated results and the experimental data are noted. It is believed that these differences originate from inaccurate information on the muscle-tendon parameters. The establishment of exact values for the subject's muscle parameters is almost impossible task. However, sensitivity analysis shows that the tendon slack length is the most critical parameter when applying the Hill-type muscle model. The effect of a change of this parameter on the muscle length force relationship is analyzed in detail.

Biomechanical Comparison Analysis of Popular Insole and Functional Insole of Running Shoes (런닝화의 일반인솔과 기능성인솔의 운동역학적 비교 분석)

  • Shin, Sung-Hwon;Jin, Young-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.9-18
    • /
    • 2006
  • These studies show that I applied to functional insole (a specific S company) for minimizing shocks and sprain people's ankle arising from running. How to an effect on human body which studied a kinematics and kinetics from 10 college students during experiments. This study imposes several conditions by barefoot, normal running shoes and put functional insole shoes ran under average $2.0{\pm}0.24$ meter per second by motion analysis, ground reaction force and electromyography that used to specific A company. First of all, Motion analysis was caused by Achilles tendon angle, Angle of the lower leg, Angle of the knee, Initial sole angle and Barefoot angle. Second, Contact time, Vertical impact force peak timing, Vertical active force and Active force timing, and Maximum loading rate under impulse of first 20 percent and Value of total impulse caused Ground reaction force. Third. The tendon fo Quadriceps femoris, Biceps femoris, Tibialis anterior and gastronemius medials caused. electromyography. 1. Ground reaction force also showed that statically approximates other results from impact peak timing (p.001), Maximum loading rate(p<.001), Maximum loading rate timing (p<.001) and impulse of first 20 percent (p<.001). 2 Electromyography showed that averagely was distinguished from other factors, and did not show about that. Above experiment values known that there was statically difference between Motion analysis and Ground reaction force under absorbing of the functional insole shoes which was not have an effect on our body for kinetics and kinematics.

The Biomechanical Comparison of Running Shoes According to the Difference of Insole (인솔 차이에 따른 런닝화의 운동역학적 비교)

  • Jin, Young-Wan;Shin, Sung-Hwon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.51-59
    • /
    • 2007
  • These studies show that I applied to functional insole (a specific A company) for minimizing shocks and sprain people's ankle arising from running. How to an effect on human body which studied a kinematics and kinetics from 10 college students during experiments. This study imposes several conditions by barefoot, normal running shoes and put functional insole shoes ran under average $2.0{\pm}0.24\;m$/sec by motion analysis and ground reaction force that used to specific A company. First of all, motion analysis was caused by achilles tendon angle, angle of the lower leg, angle of the knee, initial sole angle and barefoot angle. The result of comparative analysis can be summarized as below. Motion analysis showed that statically approximates other results from achilles tendon angle (p<.01), initial ankle angle(p<.05), initial sole angle(p<.001) and barefoot angle(p<.001). Ground reaction force also showed that statically approximates other results from impact peak timing (p<.001), Maximum loading rate(p<.001), Maximum loading rate timing (p<.001) and impulse of first 20 percent (p<.001). Above experiment values known that there was statically difference between Motion analysis and Ground reaction force under absorbing of the functional insole shoes which was not have an effect on our body for kinetics and kinematics.

Active tendon control of suspension bridges

  • Preumont, Andre;Voltan, Matteo;Sangiovanni, Andrea;Mokrani, Bilal;Alaluf, David
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.31-52
    • /
    • 2016
  • The paper first reviews the theory of active tendon control with decentralized Integral Force Feedback (IFF) and collocated displacement actuator and force sensor; a formal proof of the formula giving the maximum achievable damping is provided for the first time. Next, the potential of the control strategy for the control of suspension bridges with active stay cables is evaluated on a numerical model of an existing footbridge; several configurations are investigated where the active cables connect the pylon to the deck or the deck to the catenary. The analysis confirms that it is possible to provide a set of targeted modes with a considerable amount of damping, reaching ${\xi}=15%$. Finally, the control strategy is demonstrated experimentally on a laboratory mock-up equipped with four control stay cables equipped with piezoelectric actuators. The experimental results confirm the excellent performance and robustness of the control system and the very good agreement with the predictions.

The Biomecanical Analysis of Taekwondo Footwear (태권도화의 운동역학적 분석)

  • Jin, Young-Wan;Kawk, Yi-Sub
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.105-114
    • /
    • 2007
  • The purpose of this study was to compare the biomechanical difference of barefoot and two types taekwondo footwear. which will provide scientific data to coaches and players, to further prevent injuries and to improve each players skills. How to an effect on human body which studied a kinematics and kinetics from 8 college students during experiments. This study imposes several conditions by barefoot and two types of taekwondo footwear ran under average $2.56{\pm}0.21\;m$/sec by motion analysis, ground reaction force and electromyography that used to specific A company. First of all, motion analysis was caused by achilles tendon angle, angle of the lower leg, angle of the knee. The result of comparative analysis can be summarized as below. Motion analysis showed that statically approximates other results from achilles tendon angle (p<.01), initial ankle angle(p<.05), initial sole angle(p<.001) and barefoot angle(p<.001). Ground reaction force also showed that statically approximates other results from impact peak timing (p.001), Maximum loading rate(p<.001), Maximum loading rate timing (p<.001) and impulse of first 20 percent (p<.001). showed that averagely was distinguished from other factors, and did not show about that.

A Ftudy of Force Generation Algorithm Based on Virtual Environments (가상환경에서의 힘생성기법 연구)

  • 김창희;황석용;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1714-1717
    • /
    • 1997
  • A human operator is able to perform some tasks smoothly with force feedvack for the teleoperation or a virtual device in a the virtual environments. This paper describes a virtual force generation method with which operator can feel the interactive force between virtula robot and artificial environments. A virtual force generation algortihm is applied to generate the contact force at the arbitrary point of virtual robot, and the virtual force is displayed to the human operator via a tendon master arm consisted with 3 motors. Some experiments has beencarried out to verify the effectiveness of the force generation algorithm and usefulness of the developed backdrivable master arm.

  • PDF