• Title/Summary/Keyword: Tendon force

Search Result 210, Processing Time 0.023 seconds

A SENSITIVITY ANALYSIS OF THE KEY PARAMETERS FOR THE PREDICTION OF THE PRESTRESS FORCE ON BONDED TENDONS

  • Jang, Jung-Bum;Lee, Hong-Pyo;Hwang, Kyeong-Min;Song, Young-Chul
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.319-328
    • /
    • 2010
  • Bonded tendons have been used in reactor buildings at some operating nuclear power plants in Korea. Assessing prestress force on these bonded tendons has become an important pending problem in efforts to assure continued operation beyond their design life. The System Identification (SI) technique was thus developed to improve upon the existing indirect assessment technique for bonded tendons. As a first step, this study analyzed the sensitivity of the key parameters to prestress force, and then determined the optimal parameters for the SI technique. A total of six scaled post-tensioned concrete beams with bonded tendons were manufactured. In order to investigate the correlation of the natural frequency and the displacement to prestress force, an impact test, a Single Input Multiple Output (SIMO) sine sweep test, and a bending test using an optical fiber sensor and compact displacement transducer were carried out. These tests found that both the natural frequency and the displacement show a good correlation with prestress force and that both parameters are available for the SI technique to predict prestress force. However, displacements by the optical fiber sensor and compact displacement transducer were shown to be more sensitive than the natural frequency to prestress force. Such displacements are more useful than the natural frequency as an input parameter for the SI technique.

Equivalent Transverse Forces due to Longitudinal Prestressing of Box Girders (박스 거더의 종방향 프리스트레싱에 의한 횡방향 등가하중)

  • 양인환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.955-960
    • /
    • 2003
  • For box girders in which the longitudinal tendon is profiled in the inclined webs. longitudinal prestressing force will induce transverse effects as well as longitudinal ones. In this paper. the method estimating transverse effects induced by longitudinal prestressing is proposed. The transverse effects in the slabs of box girders due to longitudinal prestressing are investigated. Numerical analyses are carried out depending on the parameters such as web inclination and ratio of girder length to tendon eccentricity. Analysis results show that when only prestressing are considered the magnitude of stresses in the slabs of box grder is not so large. However. if the other stresses due to dead and live load et al. are superposed on these stresses. it may be that the longitudinal prestressing effects are significant.

  • PDF

Arthroscopic Partial Repair of Massive Contracted Rotator Cuff Tears

  • Kim, Sung-Jae;Kim, Young-Hwan;Chun, Yong-Min
    • Clinics in Shoulder and Elbow
    • /
    • v.17 no.1
    • /
    • pp.44-47
    • /
    • 2014
  • Typically, massive rotator cuff tears have stiff and retracted tendon with poor muscle quality, in such cases orthopaedic surgeons are confronted with big challenging to restore the cuff to its native footprint. Furthermore, even with some restoration of the footprint, it is related with a high re-tear rate due to less tension free repair and less tendon coverage. In this tough circumstance, the partial repair has yielded satisfactory outcomes at relatively short follow-up by re-creating the transverse force couple of the rotator cuff. Through this partial repair, the massive rotator cuff tear can be converted to the "functional rotator cuff tear" and provide improvement in pain and functional outcomes in patient's shoulder.

Spline Finite Strip Shell Analysis of Prestressed Concrete Box-Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 Spline 유한대판 쉘 해석)

  • 최창근;김경호;홍현석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.18-25
    • /
    • 2001
  • Analysis of prestressed box-girder bridges using the spline finite strip method is presented. In the present study, the spline finite strip method(FSM) is modified using the non-periodic B-spline interpolation. In the analysis of the prestressed box girder bridges, each tendon force is evaluated by summation of the adjacent segment forces. Once the equivalent forces acting on the structure at the tendon points are found, they are transformed into statically equivalent forces at the adjacent node or joints. Several examples were analyzed to verify the performance of present method using the non-periodic B-spline FSM. Good agreements were obtained when compared with the previous study.

  • PDF

Chattering-free sliding mode control with a fuzzy model for structural applications

  • Baghaei, Keyvan Aghabalaei;Ghaffarzadeh, Hosein;Hadigheh, S. Ali;Dias-da-Costa, Daniel
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.307-315
    • /
    • 2019
  • This paper proposes a chattering-free sliding mode control (CFSMC) method for seismically excited structures. The method is based on a fuzzy logic (FL) model applied to smooth the control force and eliminate chattering, where the switching part of the control law is replaced by an FL output. The CFSMC is robust and keeps the advantages of the conventional sliding mode control (SMC), whilst removing the chattering and avoiding the time-consuming process of generating fuzzy rule basis. The proposed method is tested on an 8-story shear frame equipped with an active tendon system. Results indicate that the new method not only can effectively enhance the seismic performance of the structural system compared to the SMC, but also ensure system stability and high accuracy with less computational cost. The CFSMC also requires less amount of energy from the active tendon system to produce the desired structural dynamic response.

Fatigue Behavior of Prestressed Concrete Beams Using FRP Tendons (FRP 긴장재를 이용한 프리스트레스트 콘크리트 보의 피로 거동)

  • Kim, Kyoung-Nam;Park, Sang-Yeol;Kim, Chang-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.135-144
    • /
    • 2011
  • Recently, researches about fiber reinforced polymer (FRP) which has excellent durability, corrosion resistance, and tensile strength as a substitution material to steel tendon have been actively pursued. This study is performed to examine FRP tendon used prestressed beam's safety under service load. The specimen was a prestressed concrete beam with internal bonded FRP tendon. In order to compare the member fatigue capacity, a control specimen of a prestressed concrete beam with ordinary steel tendon was tested. A fatigue load was applied at a load range of 60%, 70%, and 80% of the 40% ultimate load, which was obtained though a static test. The fatigue load was applied as a 1~3 Hz sine wave with 4 point loading setup. Fatigue load with maximum 1 million cycles was applied. The specimen applied with a load ranging between 40~60% did not show a fatigue failure until 1 million cycles. However, it was found that horizontal cracks in the direction of tendons were found and bond force between the tendon and concrete was degraded as the load cycles increased. This fatigue study showed that the prestressed concrete beam using FRP tendon was safe under a fatigue load within a service load range. Fatigue strength of the specimen with FRP and steel tendon after 1 million cycles was 69.2% and 59.8% of the prestressed concrete beam's static strength, respectively.

Identification of Muscle Forces and Activation of Quadriceps Femoris Muscles of Healthy Adults Considering Knee Damping Effects during Patellar Tendon Reflex (건강한 성인의 슬개건 반사 시 무릎 감쇠효과를 고려한 대퇴사두근의 근력 및 근활성도 예측)

  • Kang, Moon Jeong;Jo, Young Nam;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.57-62
    • /
    • 2014
  • Most analytical models of the human body have focused on conscious responses. A patellar tendon reflex, a representative example of spinal reflexes, occurs without a neural command. Muscle forces and activation of the quadriceps femoris muscles in healthy adults during patellar tendon reflex are identified in this study. The model is assumed to move in the sagittal plane, and the thigh and the trunk are assumed to be fixed in a sitting position so that the shank can move similar to a pendulum. The knee joint is modeled as a revolute joint, and the ankle joint is modeled as a fixed joint so that the shank and the foot can be regarded as one rigid body. Muscle forces are calculated following the inverse dynamic approach. Kinematic data obtained from an experiment (Mamizuka, 2007) are used as input data. Muscle activations are identified using a Hill-type muscle model. The obtained simulation results are compared with experimental results for validating the model and the underlying assumptions.

Flexural Behavior of External Prestressed H-Beam (외부 긴장된 H형 보의 휨거동 특성)

  • Yang, Dong Suk;Lim, Sang Hun;Park, Sun Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.79-85
    • /
    • 2002
  • Recently, prestressed H-Beam bridges with external unbonded Tendons are increasingly built. The mechanical behavior of prestressed steel H-beams is different from that of normal bonded PSC beams in a point of the slip of tendons at deviators and the change of tendon eccentricity that occurs, when service load are applied in external unbonded steel H-beams. The concept of prestressing steel structures has been widely considered, in spite of long and successful history of prestressing concrete members. In the study, The flexural test on prestressed steel H-beams has been performed in the various aspects of prestressed H-beam including the tendon type and profile. The load was plotted against the deflection and the strain respectively in the steel beam and prestressing bars. The value expected with the equation of internal force equilibrium and compatibility between the deflection of the bars and the H-beam was found to correlate well with the measured data.

Experimental Analysis of Anchorage Zone Design for Unbonded Post-Tensioned Concrete Beam With 2400MPa Single Tendons (2400MPa 단일 강연선이 적용된 포스트텐션 정착 구역 설계에 대한 실험적 연구)

  • Moon, Sang Pil;Ro, Kyong Min;Kim, Min Sook;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • In this study, the design of anchorage zone for unbonded post-tensioned concrete beam with single tendons of ultimate strength 2400MPa was evaluated to verify that the KDS 14 20 60(2016) and KHBDC 2010 codes are applicable. The experimental results showed that the bursting force equation of current design codes underestimated bursting stress measured by test, because the KDS 14 20 60(2016) and KHBDC 2010 propose the location of the maximum bursting force 0.5h which is the half of the height of member regardless of stress contribution. Although the allowable bearing force calculated by current design codes was not satisfied the prestressing force, the cracks and failure in anchorage zone was not observed due to the strengthening effect of anchorage zone reinforcement.

Development of Analysis Tool for Structural Behavior of Domestic Containment Building with Grouted Tendon (CANDU-type) (국내 부착식 텐던 격납건물(CANDU형)의 구조거동 분석 도구 개발)

  • Lee, Sang-Keun;Song, Young-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.901-908
    • /
    • 2006
  • The structural integrity of containment building in Nuclear Power Plants has to be verified by the ISI(In Service Inspection) because there are some variations on the structural behavior of it due to the change of the physical properties of concrete and tendon with the lapse of time. In this study, the program 'SAPONC-CANDU' which can monitor and analyze the structural behavior of the containment building with grouted tendon (CANDU-type, 'Wolsong unit-2, 3, and 4' in Korea) was developed. This program is based on the algorithm which can calculate the prediction values of the quantities of strain variation for the vibrating-wire strain gauges embedded into the concrete of the containment building under temperature and time dependent factors which are creep, shrinkage, and prestressing force. The readings of the strain gauges are used as input data for the operation of the program. And it finally provides graphically a prediction value, line and band of the quantity of strain variation for the respective strain gauges, therefore, it is thought that the site engineers are able to assess the structural integrity of the domestic containment building with grouted tendon with easy using this program.