DOI QR코드

DOI QR Code

Identification of Muscle Forces and Activation of Quadriceps Femoris Muscles of Healthy Adults Considering Knee Damping Effects during Patellar Tendon Reflex

건강한 성인의 슬개건 반사 시 무릎 감쇠효과를 고려한 대퇴사두근의 근력 및 근활성도 예측

  • 강문정 (한양대학교 기계공학과) ;
  • 조영남 (한양대학교 기계공학과) ;
  • 유홍희 (한양대학교 기계공학과)
  • Received : 2013.07.25
  • Accepted : 2013.10.25
  • Published : 2014.01.01

Abstract

Most analytical models of the human body have focused on conscious responses. A patellar tendon reflex, a representative example of spinal reflexes, occurs without a neural command. Muscle forces and activation of the quadriceps femoris muscles in healthy adults during patellar tendon reflex are identified in this study. The model is assumed to move in the sagittal plane, and the thigh and the trunk are assumed to be fixed in a sitting position so that the shank can move similar to a pendulum. The knee joint is modeled as a revolute joint, and the ankle joint is modeled as a fixed joint so that the shank and the foot can be regarded as one rigid body. Muscle forces are calculated following the inverse dynamic approach. Kinematic data obtained from an experiment (Mamizuka, 2007) are used as input data. Muscle activations are identified using a Hill-type muscle model. The obtained simulation results are compared with experimental results for validating the model and the underlying assumptions.

인체 해석모델은 주로 인간이 의식적으로 행하는 운동을 중심으로 발전해 왔다. 의식적 운동과 달리 슬개건 반사는 뇌를 거치지 않고 일어난다. 본 연구는 건강한 성인의 슬개건 반사로 인한 대퇴부의 근력과 근활성도를 해석적으로 예측하고자 하였다. 해석 모델은 시상면에서 평면운동을 하고, 앉은 자세에서 상체와 허벅지를 고정시켜 종아리만 진자 운동이 가능하도록 모델링 하였다. 무릎은 레볼루트 조인트로 모델링 하였고, 발목관절은 고정시켜 종아리와 발을 하나의 강체로 가정하였다. 근력은 Mamizuka 의 실험 결과로부터 얻은 운동학 정보를 이용하여 역동역학 해석을 통해 구하였으며, 근활성도는 Hill-type 근육 모델을 이용하여 예측하였다. 해석 결과는 실험결과를 통해 검증되었다.

Keywords

References

  1. Kim, C. H., 2007, "Work-related Musculoskeletal Disorders (WMSDs) in Korea and Other Countries," J. of the Society of Korea Industrial and Systems Engineering, Vol. 30, No. 2, pp. 106-112.
  2. Pandy, M. G. and Zajac, F. E., 1991, "Optimal Muscular Coordination Strategies for Jumping," J. Biomechanics, Vol. 24, No. 1, pp. 1-10. https://doi.org/10.1016/0021-9290(91)90321-D
  3. Kim, Y. H. and Phuong B. T. T., 2010, "Estimation of Joint Moment and Muscle Force in Lower Extremity During Sit-to-Stand Movement by Inverse Dynamics Analysis and by Electromyography," Trans. Korean Soc. Mech. Eng. A., Vol. 34, No. 10, pp. 1345-1350. https://doi.org/10.3795/KSME-A.2010.34.10.1345
  4. Hill, A. V., 1938, "The Heat of Shortening and Dynamics Constants of Muscles," Proceedings of the Royal Society of London, Series B, Biological Sciences, Vol. 126, No. 843, pp. 136-195. https://doi.org/10.1098/rspb.1938.0050
  5. Zajac, F. E., 1989, "Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control," Critical Reviews in Biomedical Engineering, Vol. 17, No. 4, pp. 395-411.
  6. Hoy, M. G., Zajac, F. E. and Gordon, M. E., 1990, "A Musculoskeletal Model of the Human Lower Extremity: the Effect of Muscle, Tendon and Moment Arm on the Moment-Angle Relationship of Musculotendon actuators at the Hip, Knee and Ankle," J. Biomechanics, Vol. 23, No. 2, pp.157-169. https://doi.org/10.1016/0021-9290(90)90349-8
  7. Menegaldo, L. L., Fleury, A. T. and Weber, H. I., 2004, "Moment Arms and Musculotendon Lengths Estimation for a Three-dimensional Lower-limb Model," J. Biomechanics, Vol. 37, pp. 1447-1453. https://doi.org/10.1016/j.jbiomech.2003.12.017
  8. Ma, Y., Kwon, J., Mao, Z., Lee, K., Li, L. and Chung, H., 2011, "Segment Inertial Parameters of Korean Adults Estimated from Three-dimensional Body Laser Scan Data," J. Industrial Ergonomics, Vol. 41, pp. 19-29. https://doi.org/10.1016/j.ergon.2010.11.004
  9. Simons, D. G. and Lamonte, R. J., 1971, "Automated System for the Measurement of Reflex Responses to Patellar Tendon Tap in Man," American Journal of Physical Medicine, Vol. 50, No. 2, pp. 72-79.
  10. He, J., 1998, "Stretch Reflex Sensitivity: Effects of Postural and Muscle Length Changes," IEEE Trans. Rehab. Eng., Vol. 6, No. 2, pp. 182-189. https://doi.org/10.1109/86.681184
  11. Mamizuka, N., Sakane, M., Kaneoka, K., Hori, N. and Ochiai, N., 2007, "Kinematic Quantitation of the Patellar Tendon Reflex Using a Tri-axial Accelerometer," J. Biomechanics, Vol. 40, pp. 2107-2111. https://doi.org/10.1016/j.jbiomech.2006.10.003
  12. Ohtaki, Y., Mamizuka, N., Fard, M., Harada, Y., Minakuchi, Y. and Ochiai, N., 2009, "Identification of Patellar Tendon Reflex based on Simple Kinematic Measurement," J. Biomechanical Science and Engineering, Vol. 4, No. 2, pp. 265-273. https://doi.org/10.1299/jbse.4.265
  13. Buchanan, T. S., Lloyd, D. G., Manal, K. and Beiser, T. F., 2004, "Neuro-musculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements from Measurements of Neural Command," J. Applied Biomechanics, Vol. 20, pp. 367-395. https://doi.org/10.1123/jab.20.4.367
  14. Krevolin, J. L., Pandy, M. G. and Pearce, J. C., 2004, "Moment Arm of the Patellar Tendon in the Human Knee," J. Biomechanics, Vol. 37, pp. 785-788. https://doi.org/10.1016/j.jbiomech.2003.09.010
  15. Narici, M. V., Landoni, L. and Minetti, A. E., 1992, "Assessment of Human Knee Extensor Muscles Stress from in vivo Physiological Cross-sectinal Area and Strength Measurement," Eur. J. Applied. Physiol., Vol. 65, pp. 438-444. https://doi.org/10.1007/BF00243511

Cited by

  1. Analysis of Elbow Reflexes Using Activation Model for Stretch Reflex vol.39, pp.3, 2015, https://doi.org/10.3795/KSME-B.2015.39.3.215