• Title/Summary/Keyword: Temporary steel

Search Result 130, Processing Time 0.026 seconds

Case Study for Buckling Design of Temporary Bridges using System Buckling Analysis (시스템좌굴 해석법을 이용한 라멘형가교 주요부재의 좌굴설계에 관한 사례 연구)

  • Kyung, Yong Soo;So, Byoung Hoon;Bang, Jin Hwan;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 2007
  • Generally, main girders and steel piers of temporary bridges form the steel rahmen structure. In this study, the rational stability design procedure for main members of temporary bridges was presented using a 3D system buckling analysis and second-order elastic analysis. Six types of temporary bridges, which can be designed and fabricated in reality, were chosen and the buckling design for them was performed in consideration ofload combinations of dead and live loads, thermal load, and wind load. Effective buckling length of steel piers, transition of 3D buckling modes, and effects of second-order analysis were investigated through a case study involving six temporary bridges.

Buckling Design of Temporary Bridges Subjected to Both Bending and Compression (압축과 휨을 동시에 받는 가교량 주요부재의 좌굴설계)

  • So Byoung-Hoon;Kyung Yong-Soo;Bang Jin-Hwan;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.977-984
    • /
    • 2006
  • Generally main girders and steel piers of temporary bridges form the steel rahmen structure. In this study, the rational stability design procedure for main members of temporary bridges is presented using 3D system buckling analysis and second-order elastic analysis. 2 types of temporary bridges, which are possible to be designed and fabricated in reality, are chosen and the buckling design for them is performed considering load combinations of dead and live loads, thermal load, and wind load. Effective buckling length of steel piers, effects of live loads on effective length of main members, transition of ~id buckling modes, and effects of second-order analysis are investigated through case study of 2 temporary bridges.

  • PDF

Evaluation of the heat affection according to the gouging height for low alloy steel structures (가우징 높이에 따른 구조물의 열영향 평가)

  • Ha, Joon-Wook;Yang, Byong-Il;Park, Seong-Jin;Lee, Ki-Hak
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.477-482
    • /
    • 2001
  • A study was performed to determine the optimum height for an arc air gouging of temporary attachments, which were attached at the pressure vessel made of low alloy steel. Frequently, the crack occurred in the base metal by the excessive heat input during an arc air gouging process to remove the temporary attachments. A numerical analysis by 2-dimensional finite element method was performed to calculate the temperature distribution in the base metal during the removal of temporary attachments. And then the mock-up test was performed to verify the numerical results. Numerical values showed good agreement with the experimental results. These results indicated that the defects due to the excessive heat input during an arc air gouging were dependent on the height of temporary attachments remained above hie main products.

  • PDF

Evaluation of Corrosion Thickness Loss of Temporary Steel Members Exposed to A Subway Construction Site (지하철 공사현장 환경하의 가시설 강재의 부식두께감소량 추정)

  • Kim, In Tae;Jeon, Sang Hyuck;Hur, Jung Ok;Cheung, Jin Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.301-310
    • /
    • 2009
  • Steel has been widely used as a material in temporary structures. Corrosion attack often reduces the long-term durability of temporary steel members that are not protected from corrosion. In designing temporary steel structures, it is difficult to evaluate their long-term durability, since the thickness loss of steel members is not clear. In this study, laboratory and field exposure corrosion tests were performed on structural steel plate specimens, and the loss of thickness of specimens that were exposed to a subway construction site for 11 months and of specimens that were exposed to environments with controlled humidity and calcium chloride for six months were measured. Finally, a thickness loss equation was formulated based on the environmental conditions and the testing periods.

Development of Design Support System to Optimize the Temporary Work (강교량 설치 가설공사의 최적화설계 지원시스템 개발)

  • Cho, Hun-Hee;Park, Jae-Woo;Cho, Moon-Young;Kim, Jung-Yeol
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.6 s.28
    • /
    • pp.115-123
    • /
    • 2005
  • Design of steel $bridge^{\circ}AEs$ temporary works has conducted relying on the experiences of engineers based on the previous similar projects. Consequently, there have been arguments against over-design of temporary bents to be required at the actual construction sites, and unnecessary design changes have been issued at the construction stage. In this study, we have developed an optimum design support system for temporary works of the steel bridge construction through establishing the database for the materials to be needed for implementation of temporary works. We've also improved the accuracy and efficiency of the works through the design optimization for temporary works, and contributed to reduce design changes as well as to utilize the design informations at the construction stage.

A Study on the Bearing Capacity of Steel Composite Concrete Lining Board (강합성 콘크리트 복공판의 내력시험에 관한 연구)

  • Paik, Shinwon;Kim, Yongon
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.122-126
    • /
    • 2012
  • Steel lining board usually is used as a floor on the temporary steel bridges. It also is installed in the subway construction site. However, in particular in subway construction, renovations and site of old bridges, these steel lining board structures have a problem such as noise, accidents and slip hazards. So steel composite lining board is being developed to solve this problem. Steel composite lining board consists of compressive concrete showing excellent performance in slip, durability, resistance and noise, lower tensile and shear steel showing high safety, effective and superior workability in many respects. Steel composite lining board structure gradually is used in many construction sites, because it has a high quality such as durability, little noise and slip. In this study, flexural tests of steel composite lining board in accordance with welding patterns were conducted to compare the performance of the structure.

Development of Prestressed Steel Frame Overpass using Temporary Piers (가 지지점을 이용한 프리스트레스된 강재 라멘식 보도육교의 개발)

  • Kong, Byung Seung;Hwang, Won Sup;Park, Young Je
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.565-575
    • /
    • 1998
  • This study presents overall process for designing and constructing a prestressed frame overpass using temporary piers. For the purpose of automating the design process, this study presents a computer program. According to the effective span(20m, 25m, 30m, 35m, 40m, 45m), this study performed parametric analysis and eventually presented appropriate cross section and compared this cross section with that of the existing simple steel overpass in girder height and quantify of the steel. $26{\sim}48%$ for gilder height and $25{\sim}34%$ for quantify of the steel are reduced as the result of study for span length $20{\sim}45m$. As long as the span length. the reduction rate was large.

  • PDF

A Study for Evaluation of Performance and Influence Factors for Steel Pipe Supports ( I ) (강제파이프서포트의 성능평가 및 영향요인에 대한 연구( I ))

  • Hwang Jung-Hyun;Shin Sang-Tae;Yun Sang-Moon;Kim Kyung-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.139-146
    • /
    • 2004
  • Recently, interest on the performance of the construction temporary equipment have been greatly increased. Since the application of the 'Performance Test Code' for the equipment in 1992 according to the Industrial Safety and Health Act, a basic study of Steel Pipe Supports have been carried out for the last 2 years based on the Performance Test Results. The present code specification for the Steel Pipe Supports and research status are introduced. So far, total 849 specimen have been examined on their outer and inner pipe's length, thickness, their overlapping length, and their load carrying capacities. The test was conducted separately into two groups - used and new equipment, and it was found that the used ones revealed a decrease on their load carrying capacity, almost $10\%$ compared to the new ones. Considering this fact, it is strongly recommended to ensure the quality of the equipment before use at the jobsite. First of all, based on this basic investigation, the statistical values on the Steel Pipe Supports are suggested and further analysis on the effect of each component is in progress. It is, however, expected that this report can be used as a basic information on the Steel Pipe Supports.

A Development of V type Suspension String Set for UHV Transmission Lines (초고압 송전선로용 V련 현수애자장치의 개발)

  • Sohn H. K.;Lee H. K.;Keum E. Y.;Min B. W.;Choi J. S.;Choi I. H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.497-499
    • /
    • 2004
  • Due to a typhoon named MAEMI on Sep12, 2004, 7 transmission towers collapsed and 3 were damaged in the Gyeongnam and Busan areas. These caused long-term black-outs in Goeje-do. When a transmission tower collapses or is damaged, Construction will take more than 2 months and this will be accompanied by long-term black-outs. Therefore a temporary iron pole is used in such emergencies. Current temporary rehabilitation angle steel iron Pole consistes of around 800 members, 2,800 bolts and it takes about 5 days to construct a temporary transmission line. Consiquently wide black-outs occur during the construction of the temporary transmission line. To reduce black-out time, the construction period must be reduced as much as possible. This paper presents new methods to reduce temporary transmission line construction time to within 48 hours by applying a self-reliance assembling method instead of the current man power assembling method and by modulizing each angle steel with duralumin.

  • PDF

Development of the Self-Build based Emergency Towers for Overhead Transmission Line (송전선로 비상복구용 자주조립식 철주 개발)

  • Byun Gang;Min Byeong Wook;Wi Hwa Bog;Park Jae Ung;Baek Soo Gon
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.494-496
    • /
    • 2004
  • Due to a typhoon named MAEMI on Sep12, 2004, 7 transmission towers collapsed and 3 were damaged in the Gyeongnam and Busan areas. These caused long-term black-outs in Goeje-do. When a transmission tower collapses or is damaged, Construction will take more than 2 months and this will be accompanied by long-term black-outs. Therefore a temporary iron pole is used in such emergencies. Current temporary rehabilitation angle steel iron Pole consistes of around 800 members, 2,800 bolts and it takes about 5 days to construct a temporary transmission line. Consiquently wide black-outs occur during the construction of the temporary transmission line. To reduce black-out time, the construction period must be reduced as much as possible. This paper presents new methods to reduce temporary transmission line construction time to within 48 hours by applying a self-reliance assembling method instead of the current man power assembling method and by modulizing each angle steel with duralumin.

  • PDF