• 제목/요약/키워드: Temporal pattern

검색결과 718건 처리시간 0.027초

시퀀스 빈발도와 가중치를 이용한 최적 이동 패턴 탐사 (Optimal Moving Pattern Mining using Frequency of Sequence and Weights)

  • 이연식;박성숙
    • 인터넷정보학회논문지
    • /
    • 제10권5호
    • /
    • pp.79-93
    • /
    • 2009
  • 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 개발하기 위한 목적으로 시공간 상에서 발생하는 이동 객체의 다양한 패턴들 중 의미있는 유용한 패턴을 추출하기 위한 시공간 패턴 탐사가 필요하다. 이에 본 논문에서는 방대한 이동 객체의 이력 데이터로부터 패턴 탐사를 통해 실세계에 적용 가능한 위치 기반 서비스의 개발에 대한 응용으로, STOMP(F)[25]에서 정의한 최적의 이동 패턴을 탐사하는 문제들을 기반으로 시간 및 공간 제약을 갖는 패턴을 추출하기 위한 새로운 탐사 기법인 STOMP(FW)를 제안한다. 제안된 기법은 패턴 빈발도 만을 이용한 기존 연구(STOMP(F)[25])에 가중치(거리, 시간, 비용 등)를 복합적으로 이용하는 패턴 탐사 방법으로, 특정한 지점들 사이를 이동한 객체의 이동 패턴들 중 패턴 빈발도가 특정 임계치 이상이고 가중치가 가장 적게 소요되는 이동 패턴을 최적 경로로 결정하는 방법이다. 제안된 방법의 패턴 탐사는 경험적인 이동 이력을 사용함으로써 기존의 최적 경로 탐색 기법들($A^*$, Dijkstra 알고리즘)이나 빈발도 만을 이용한 방법들 보다 접근하는 노드 수가 상대적으로 적어 보다 빠르고 정확하게 최적 패턴을 탐색할 수 있음을 보인다.

  • PDF

시간간격을 고려한 시간관계 규칙 탐사 기법 (Discovering Temporal Relation Rules from Temporal Interval Data)

  • 이용준;서성보;류근호;김혜규
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제28권3호
    • /
    • pp.301-314
    • /
    • 2001
  • 데이터마이닝은 대용량 데이터베이스에 내재된 유용한 지식을 탐사하는 기술로 정의된다. 데이터마이닝에 대한 연구가 진행되면서 순차 패턴, 유사 시계열 탐사, 시간 연관규칙 탐사 등과 같이 시간 값을 가진 데이터로부터 지식을 탐사하고자 하는 시간 데이터마이닝에 대한 연구가 수행되었다. 그러나 기존 연구는 트랜잭션의 발생 시점만을 가진 데이터를 다루고 있으며 시간 간격을 가진 데이터는 거의 고려하고 있지 않다. 실세계에서는 환자의 병력, 상품 구매 이력, 웹 로그 등과 같은 시간간격을 가진 다양한 데이터가 존재하며 이로부터 여러 유용한 지식을 찾아낼 수 있다. Allen은 시간간격 데이터 사이에 발생할 수 있는 시간 관계와 시간 관계를 구할 수 있는 시간간격 연산자를 정의하였다. 본 논문에서는 Allen의 정의를 기반으로 시간간격 데이터로부터 시간관계 규칙을 효율적으로 탐사하기 위한 새로운 데이터마이닝 기법을 제안하였다. 이 기법은 발생 시점을 가진 시간 데이터를 시간간격 데이터로 요약하여 일반화하는 전처리 알고리즘과 시간간격 데이터로부터 시간관계 규칙을 생성하는 규clr 탐사 알고리즘으로 구성된다. 이 기법은 기존 데이터마이닝 기법에서 찾지 못하는 유용한 시간 규칙을 탐사할 수 있다.

  • PDF

Mining Spatio-Temporal Patterns in Trajectory Data

  • Kang, Ju-Young;Yong, Hwan-Seung
    • Journal of Information Processing Systems
    • /
    • 제6권4호
    • /
    • pp.521-536
    • /
    • 2010
  • Spatio-temporal patterns extracted from historical trajectories of moving objects reveal important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of location symbols and derive frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations may be lost due to the inappropriate approximations of spatial and temporal properties. In this paper, we address the problem of mining spatio-temporal patterns from trajectory data. The inefficient description of temporal information decreases the mining efficiency and the interpretability of the patterns. We provide a formal statement of efficient representation of spatio-temporal movements and propose a new approach to discover spatio-temporal patterns in trajectory data. The proposed method first finds meaningful spatio-temporal regions and extracts frequent spatio-temporal patterns based on a prefix-projection approach from the sequences of these regions. We experimentally analyze that the proposed method improves mining performance and derives more intuitive patterns.

Estimation of Winter Wheat Sown Area Using Temporal Characteristics of NDVI

  • Uchida, S.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.231-233
    • /
    • 2003
  • Agricultural land use generally shows specific temporal characteristics of NDVI obtained from satellite data. In terms of winter wheat, a higher value compared with other land use types in May and a considerably low value in June could be discriminative features of temporal change of NDVI. In this study, the author examined methods for estimating winter wheat sown area in sub-pixel level of coarse resolution satellite data using temporal characteristics of NDVI. Application of the methods to the major grain production area in China exhibited properly a spatial distribution pattern of winter wheat sown area.

  • PDF

Change Detection of Land-cover from Multi-temporal KOMPSAT-1 EOC Imageries

  • Ha, Sung-Ryong;Ahn, Byung-Woon;Park, Sang-Young
    • 대한원격탐사학회지
    • /
    • 제18권1호
    • /
    • pp.13-23
    • /
    • 2002
  • A radiometric correction method is developed to apply multi-temporal KOMPSAT-1 EOC satellite images for the detection of land-cover changes b\ulcorner recognizing changes in reflection pattern. Radiometric correction was carried out to eliminate the atmospheric effects that could interfere with the image properly of the satellite data acquired at different multi-times. Four invariant features of water, sand, paved road, and roofs of building are selected and a linear regression relationship among the control set images is used as a correction scheme. It is found that the utilization of panchromatic multi-temporal imagery requires the radiometric scene standardization process to correct radiometric errors that include atmospheric effects and digital image processing errors. Land-cover with specific change pattern such as paddy field is extracted by seasonal change recognition process.

혼잡교통류 관리를 위한 동적 용량의 개념 및 산정방법 (Dynamic Capacity Concept and its Determination for Managing Congested Flow)

  • 박은미
    • 대한교통학회지
    • /
    • 제22권3호
    • /
    • pp.159-166
    • /
    • 2004
  • 도로용량편람에서 정의하고 있는 용량은 하류부에 용량을 제한하는 요소가 없다는 것을 가정한 정상교통류에 대한 용량 개념으로서, 이는 전통적으로 계획, 설계, 현재 및 장래 도로시설의 운영상태 분석 등에 사용되어 왔다. 실시간 제어는, 용량을 초과하지 않는 교통류를 유지시켜 혼잡교통류로의 전이를 막고, 물리적 여건이나 제반 확률적 요인으로 혼잡이 발생하였을 경우 조속히 용량이하로 교통량을 떨어뜨려 정상교통류로 회복시키는 데 목표를 둔다. 이러한 맥락에서 용량은 실시간 제어의 효과를 좌우하는 중요한 입력변수이며, 정상교통류 상태라면 혼잡으로 전이되지 않을 임계치로서의 용량 산정이 중요한 관건이다. 그러나 혼잡교통류 상태에서 정상교통류로 되도록 빨리 회복시켜 주기 위한 제어 기준으로서의 용량은, 하류부 혼잡의 시공간적 전개에 따라 변하는 값이어야 하며 이러한 동적 용량변화를 정확히 예측할 수 있는 방법론이 요구된다. 이에 본 연구에서는 기존의 용량 개념을 출력 개념의 용량으로 정의하고, 입력 개념의 용량을 최대가능처리량(Maximum Sustainable Throughput)으로 새롭게 정의하였다. 이 최대가능처리량은 혼잡의 시공간적 전개에 따라 결정되는 동적 용량이며, 이러한 혼잡의 시공간적 전개는 Newell의 단순화된 교통량-밀도 모형으로 예측할 것을 제안하였다.

이동객체 위치 일반화를 이용한 시공간 이동 패턴 탐사 (Spatiotemporal Moving Pattern Discovery using Location Generalization of Moving Objects)

  • 이준욱;남광우
    • 정보처리학회논문지D
    • /
    • 제10D권7호
    • /
    • pp.1103-1114
    • /
    • 2003
  • 현재의 이동객체를 기반으로 하는 다양한 시공간 응용환경에서의 서비스 지원 시스템 개발을 위하여 중요한 문제 중의 하나는 방대한 이동객체의 위치 이동 데이터로부터의 의미 있는 지식인 시공간 이동 패턴을 탐사하는 것이다. 이를 위하여 시간적 위상관계, 공간적 위상관계 그리고 시공간적 위상관계에 대한 접근이 지식 탐사를 위하여 고려되어야 한다. 이 논문에서는 효율적인 시공간 이동 패턴 탐사 기법인 MPMine 알고리즘을 제안하였다. 제안한 기법은 시간 제약조건과 공간 제약조건 등을 함께 괴려하며 또한 공간 위상 연산인 contain()을 이용한 공간 개념화를 수행할 수 있다. 제안한 기법은 기존의 일반적인 시간 패턴 탐사 기법과 달리 이동객체 데이터 집합으로부터 위치 및 일반화를 통하여 탐색 공간을 줄일 수 있어 효율적으로 유용한 이동 패턴을 탐사할 수 있다.

위치 기반 서비스를 위한 이동 객체의 시간 패턴 탐사 기법 (Temporal Pattern Mining of Moving Objects for Location based Services)

  • 이준욱;백옥현;류근호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제29권5호
    • /
    • pp.335-346
    • /
    • 2002
  • 위치 기반 서비스는 이동중인 사용자에게 위치와 관련된 정보를 제공한다. 최소한의 자원으로 사용자에게 유용한 정보를 개인화하여 제공하는 것은 위치 기반 서비스가 가져야 할 필수적인 기능이다. 이 기능은 데이타 마이닝을 통해 실현될 수 있다. 하지만 기존의 데이터 마이닝 연구는 시간 및 공간 속성을 동시에 고려하고 있지 않다. 따라서 시간에 따라 공간 위치 속성이 변경되는 특성을 갖는 위치 기반 서비스의 대상에는 적절하지 않다. 이 논문에서는 시간 및 공간 속성을 가지는 이동 객체의 위치 데이타로부터 유용한 시간 패턴을 탐사하기 위한 새로운 데이타 마이닝 기법을 제안하였다. 평면 상에서 좌표로 표현되는 이동 객체의 위치 정보를 일반화하기 위하여 contains와 같은 공간 연산을 사용하였다. 또한 이동 패턴 탐사 시 실제 유효한 시퀀스를 만들기 위해 객체의 위치 사이에 시간 제약조건을 적용하였다. 이렇게 생성된 이동 객체 위치의 시퀀스로부터 빈발 이동 시퀀스를 구하여 시간 패턴을 생성하였다. 제안한 기법은 기존과는 다른 시, 공간적 접근을 취함으로써 시간과 공간 의미가 중요시되는 위치 기반 서비스에 적합한 새로운 유형의 지식을 제공할 수 있다.

시공간 이동 시퀀스 패턴 마이닝 기법 (Spatial-Temporal Moving Sequence Pattern Mining)

  • 한선영;용환승
    • 응용통계연구
    • /
    • 제19권3호
    • /
    • pp.599-617
    • /
    • 2006
  • 최근 모바일 컴퓨팅 시스템에서 위치 기반 서비스(Location Based System: LBS)에 대한 연구가 활발히 진행되고 있다. 시공간 이동 시퀀스 마이닝은 이동 경로 데이터로부터 사용자 이동 패턴을 추출하는 새로운 마이닝 기법이다. 시공간 이동 시퀀스 패턴 마이닝은 기존의 빈발 패턴 마이닝 기법과 유사하나 몇 가지 차이점이 있다. 빈발 패턴 마이닝은 장바구니 분석에서와 같이 고객이 구입한 아이템과 관련된 것이나 시공간 이동 시퀀스 패턴 마이닝은 사용자 이동 시퀀스 경로를 대상으로 한다. 또한 사용자의 관심도를 반영하기 위해 해당 위치에서의 소요시간을 고려한다. 본 연구는 대표적인 빈발 패턴 마이닝 기법의 하나인 Apriori 알고리즘에 이동 시퀀스 데이터를 적용하여 Apriori_msp 알고리즘을 제안하였으며 성능 평가를 수행한 결과를 제시하였다.

딕셔너리 러닝을 이용한 음파 신호 분류기 설계 (Acoustic Signal Classifier Design using Dictionary Learning)

  • 박성민;사성진;오광명;이희승
    • 자동차안전학회지
    • /
    • 제8권1호
    • /
    • pp.19-25
    • /
    • 2016
  • As new car technology is developing, temporal interaction is needed in automotive. Rhythmic pattern is one of the practical examples of temporal interaction in vehicle. To recognize rhythmic pattern and its input medium, dictionary learning is applicable algorithm. In this paper, performance and memory requirement of the learning algorithm is tested and is sufficiently good for use this acoustic sound.