• Title/Summary/Keyword: Temporal noise

Search Result 288, Processing Time 0.023 seconds

Improved Motion Compensation Using Adjacent Pixels (인접 화소를 이용한 개선된 움직임 보상)

  • Seo, Jeong-Hoon;Kim, Jeong-Pil;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.280-289
    • /
    • 2010
  • The H.264/AVC standard uses efficient inter prediction technologies improving the coding efficiency by reducing temporal redundancy between images. However, since H.264/AVC does not efficiently encode a video sequence that occurs a local illumination change, the coding efficiency of H.264/AVC is decreased when a local illumination change happens in video. In this paper, we propose an improved motion compensation using adjacent pixels and motion vector refinement to efficiently encode local illumination changes. The proposed method always improves the BD-PSNR (Bj$\o$ntegaard Delta Peak Signal-to-Noise Ratio) of 0.01 ~ 0.21 dB compared with H.264/AVC.

Mutual Interference on Mobile Pulsed Scanning LIDAR

  • Kim, Gunzung;Eom, Jeongsook;Choi, Jeonghee;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.43-62
    • /
    • 2017
  • Mobile pulse scanning Light Detection And Ranging (LIDAR) are essential components of intelligent vehicles capable of autonomous travel. Obstacle detection functions of autonomous vehicles require very low failure rates. With the increasing number of autonomous vehicles equipped with scanning LIDARs to detect and avoid obstacles and navigate safely through the environment, the probability of mutual interference becomes an important issue. The reception of foreign laser pulses can lead to problems such as ghost targets or a reduced signal-to-noise ratio. This paper will show the probability that any two scanning LIDARs will interfere mutually by considering spatial and temporal overlaps. We have conducted four experiments to investigate the occurrence of the mutual interference between scanning LIDARs. These four experimental results introduced the effects of mutual interference and indicated that the interference has spatial and temporal locality. It is hard to ignore consecutive mutual interference on the same line or the same angle because it is possible the real object not noise or error. It may make serious faults because the obstacle detection functions of autonomous vehicle rely on heavily the scanning LIDAR.

Object-based Change Detection using Various Pixel-based Change Detection Results and Registration Noise (다양한 화소기반 변화탐지 결과와 등록오차를 이용한 객체기반 변화탐지)

  • Jung, Se Jung;Kim, Tae Heon;Lee, Won Hee;Han, You Kyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.481-489
    • /
    • 2019
  • Change detection, one of the main applications of multi-temporal satellite images, is an indicator that directly reflects changes in human activity. Change detection can be divided into pixel-based change detection and object-based change detection. Although pixel-based change detection is traditional method which is mostly used because of its simple algorithms and relatively easy quantitative analysis, applying this method in VHR (Very High Resolution) images cause misdetection or noise. Because of this, pixel-based change detection is less utilized in VHR images. In addition, the sensor of acquisition or geographical characteristics bring registration noise even if co-registration is conducted. Registration noise is a barrier that reduces accuracy when extracting spatial information for utilizing VHR images. In this study object-based change detection of VHR images was performed considering registration noise. In this case, object-based change detection results were derived considering various pixel-based change detection methods, and the major voting technique was applied in the process with segmentation image. The final object-based change detection result applied by the proposed method was compared its performance with other results through reference data.

Noise and flow analysis of lift-type disk wind power System (양력형 디스크 풍력 발전기의 유동 및 소음 해석)

  • Ko, Seungchul;Na, Jisung;Lee, Joon Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.52-56
    • /
    • 2017
  • In this study, we investigate the flow characteristics of lift-type disk which behaves the up-down motion using the large eddy simulation (LES) and immersed boundary method (IBM). Also, we perform the noise analysis using pressure field at 1.35 m distance and reveal the cause of noise to observe the vortical structure analysis of flow result. It is observed that vortical structure and wind shear were generated at leading edge and tower with high velocity deficit and flow separation. High magnitude of flow noise was observed in low frequency range which is from 30 Hz to 60 Hz. It was observed that vortical structure at leading edge was generated in frequency range from 33.3 Hz to 41.6 Hz. Temporal characteristic in vortical structure at leading edge was similar to noise characteristics, having the similar frequency ranges.

Visual Information Selection Mechanism Based on Human Visual Attention (인간의 주의시각에 기반한 시각정보 선택 방법)

  • Cheoi, Kyung-Joo;Park, Min-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.378-391
    • /
    • 2011
  • In this paper, we suggest a novel method of selecting visual information based on bottom-up visual attention of human. We propose a new model that improve accuracy of detecting attention region by using depth information in addition to low-level spatial features such as color, lightness, orientation, form and temporal feature such as motion. Motion is important cue when we derive temporal saliency. But noise obtained during the input and computation process deteriorates accuracy of temporal saliency Our system exploited the result of psychological studies in order to remove the noise from motion information. Although typical systems get problems in determining the saliency if several salient regions are partially occluded and/or have almost equal saliency, our system is able to separate the regions with high accuracy. Spatiotemporally separated prominent regions in the first stage are prioritized using depth value one by one in the second stage. Experiment result shows that our system can describe the salient regions with higher accuracy than the previous approaches do.

Hierarchical Motion Estimation Method for MASF (MASF 적용을 위한 계층적 움직임 추정 기법)

  • 김상연;김성대
    • Journal of Broadcast Engineering
    • /
    • v.1 no.1
    • /
    • pp.7-13
    • /
    • 1996
  • MASF is a kind of temporal filter proposed for noise reduction and temporal band limitation. MASF uses motion vectors to extract temporal information in spatial domain. Therefore, inaccurate motion information causes some distortions in MASF operation. Currently, bilinear interpolation after BMA(Block Matching Algorithm) is used for the motion estimation sheme of MASF. But, this method results in unreliable estimation when the object in image sequence has larger movement than the maximum displacement assumed in BMA or the input images are severely corrupted with noise. In order to i:;olve this problem, we analyse the effect of inaccurate motion on MASF and propose a hierarchical motion estimation algorithm based on the analysis results. Experimental results show that the proposed method produces reliable output under large motion and noisy situations.

  • PDF

Multi-View Video Coding Using Illumination Change-Adaptive Motion Estimation and 2D Direct Mode (조명변화에 적응적인 움직임 검색 기법과 2차원 다이렉트 모드를 사용한 다시점 비디오 부호화)

  • Lee, Yung Ki;Hur, Jae Ho;Lee, Yung Lyul
    • Journal of Broadcast Engineering
    • /
    • v.10 no.3
    • /
    • pp.321-327
    • /
    • 2005
  • A MVC (Multi-view Video Coding) method, which uses both an illumination change-adaptive ME (Motion Estimation)/DC (Motion Compensation) and a 2D (Dimensional) direct mode, is proposed. Firstly, a new SAD (Sum of Absolute Difference) measure for ME/MC is proposed to compensate the Luma pixel value changes for spatio-temporal motion vector prediction. Illumination change-adaptive (ICA) ME/MC uses the new SAD to improve both MV (Motion Vector) accuracy and bit saving. Secondly, The proposed 2D direct mode that can be used in inter-view prediction is an extended version of the temporal direct mode in MPEG-4 AVC. The proposed MVC method obtains approximately 0.8dB PSNR (Peak Signal-to-Noise Ratio) increment compared with the MPEG-4 AVC simulcast coding.

Estimation on the Depth of Anesthesia using Linear and Nonlinear Analysis of HRV (HRV 신호의 선형 및 비선형 분석을 이용한 마취심도 평가)

  • Ye, Soo-Young;Baik, Seong-Wan;Kim, Hye-Jin;Kim, Tae-Kyun;Jeon, Gye-Rok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.76-85
    • /
    • 2010
  • In general, anesthetic depth is evaluated by experience of anesthesiologist based on the changes of blood pressure and pulse rate. So it is difficult to guarantee the accuracy in evaluation of anesthetic depth. The efforts to develop the objective index for evaluation of anesthetic depth were continued but there was few progression in this area. Heart rate variability provides much information of autonomic activity of cardiovascular system and almost all anesthetics depress the autonomic activity. Novel monitoring system which can simply and exactly analyze the autonomic activity of cardiovascular system will provide important information for evaluation of anesthetic depth. We investigated the anesthetic depth as following 7 stages. These are pre-anesthesia, induction, skin incision, before extubation, after extubation, Post-anesthesia. In this study, temporal, frequency and chaos analysis method were used to analyze the HRV time series from electrocardiogram signal. There were NN10-NN50, mean, SDNN and RMS parameter in the temporal method. In the frequency method, there are LF and HF and LF/HF ratio, 1/f noise, alphal and alpha2 of DFA analysis parameter. In the chaos analysis, there are CD, entropy and LPE. Chaos analysis method was valuable to estimate the anesthetic depth compared with temporal and frequency method. Because human body was involved the choastic character.

Measurement of the degree of second order temporal coherence $g_s^{(2)}({\tau})$ of a laser speckle backscattered from a rotating randomly rough metal surface (회전하는 거친금속표면에서 후방산란되어 형성된 레이저 스펙클의 세기의 시간상관함수 $g_s^{(2)}({\tau})$의 측정)

  • 안성준;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.161-166
    • /
    • 1992
  • The s-polarized laser beam is incident with an angle ~$-30^{\circ}$ to a uniformly rotating rough metal surface and the degree of second order temporal coherence $g_{s}^{(2)}(\tau)$ of the backscattered wave, which has the same polarization with the incident laser beam, is measured. The contribution of shot noise involved in the measurement of $g_{s}^{(2)}(0)$ is subtracted from the photoelectric signal to obtain the accurate value of $g_{s}^{(2)}(0)$.At each scattering angle$\theta_{s}$에서$g_{s}^{(2)}(\tau)$ is almost consistent with the function {1+exp($-\tau^2/\tau_0^2$)}, which is the same result with the case of the laser speckle formed by scattering on the rotating ground glass suface. In addition, a peak in the angular distribution of $\tau_0$ is observed with the maximum at$\theta_s=34^{\circ}$.It is found that the rough metallic scattering with multiple scattering over than 10% has the same function of the degree of second order temporal coherence with that of the ground glass surface scattering where the multiple scattering is ignorably small.

  • PDF

Moving Object Contour Detection Using Spatio-Temporal Edge with a Fixed Camera (고정 카메라에서의 시공간적 경계 정보를 이용한 이동 객체 윤곽선 검출 방법)

  • Kwak, Jae-Ho;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.474-486
    • /
    • 2010
  • In this paper, we propose a new method for detection moving object contour using spatial and temporal edge. In general, contour pixels of the moving object are likely present around pixels with high gradient value along the time axis and the spatial axis. Therefore, we can detect the contour of the moving objects by finding pixels which have high gradient value in the time axis and spatial axis. In this paper, we introduce a new computation method, termed as temporal edge, to compute an gradient value along the time axis for any pixel on an image. The temporal edge can be computed using two input gray images at time t and t-2 using the Sobel operator. Temporal edge is utilized to detect a candidate region of the moving object contour and then the detected candidate region is used to extract spatial edge information. The final contour of the moving object is detected using the combination of these two edge information, which are temporal edge and spatial edge, and then the post processing such as a morphological operation and a background edge removing procedure are applied to remove noise regions. The complexity of the proposed method is very low because it dose not use any background scene and high complex operation, therefore it can be applied to real-time applications. Experimental results show that the proposed method outperforms the conventional contour extraction methods in term of processing effort and a ghost effect which is occurred in the case of entropy method.