• Title/Summary/Keyword: Temporal image processing

Search Result 159, Processing Time 0.035 seconds

Analysis of UAV-based Multispectral Reflectance Variability for Agriculture Monitoring (농업관측을 위한 다중분광 무인기 반사율 변동성 분석)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1379-1391
    • /
    • 2020
  • UAV in the agricultural application are capable of collecting ultra-high resolution image. It is possible to obtain timeliness images for phenological phases of the crop. However, the UAV uses a variety of sensors and multi-temporal images according to the environment. Therefore, it is essential to use normalized image data for time series image application for crop monitoring. This study analyzed the variability of UAV reflectance and vegetation index according to Aviation Image Making Environment to utilize the UAV multispectral image for agricultural monitoring time series. The variability of the reflectance according to environmental factors such as altitude, direction, time, and cloud was very large, ranging from 8% to 11%, but the vegetation index variability was stable, ranging from 1% to 5%. This phenomenon is believed to have various causes such as the characteristics of the UAV multispectral sensor and the normalization of the post-processing program. In order to utilize the time series of unmanned aerial vehicles, it is recommended to use the same ratio function as the vegetation index, and it is recommended to minimize the variability of time series images by setting the same time, altitude and direction as possible.

A Color Video Flame Detection Method based on Wavelet Transform to Remove Flickering Non-Flame Detection (점멸성 비화염 검출을 제거하는 웨이블릿변환 기반의 컬러영상 화염 검출 방법)

  • Sanjeewa, Nuwan;Lee, Hyun-Sul;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.89-94
    • /
    • 2013
  • This paper presents color video flame detection algorithm based on wavelet transform to remove detection of flickering non-flame objects. Conventional flame detection algorithms consist of simple or mixed functions using colors, temporal and spatial characteristics. But those algorithms detect non-flame objects as flame regions sometimes. False alarm reasons are flame-like objects with regular flickering lights such as car signal lamps, alarm lights etc. The proposed algorithm is to reduce false detection which is occurred in periodic flickering lights. At first, It segments the candidate flame regions by using frame difference, flame colors. Then it distinguish flame regions and non flame regions including flickering car lights by analyzing wavelet coefficients. Computer simulation results showed that the proposed algorithm removes false detection due to the periodic flickering lamps by performing 97.9% of correct detection rate while false detection rate is 7.3%.

Design and Implementation of the Query Processor and Browser for Content-based Retrieval in Video Database (내용기반 검색을 위한 비디오 데이터베이스 질의처리기 및 브라우저의 설계 및 구현)

  • Lee, Hun-Sun;Kim, Yong-Geol;Bae, Yeong-Rae;Jin, Seong-Il
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2008-2019
    • /
    • 1999
  • As computing technologies are rapidly progressed and widely used, the needs of high quality information have been increased. To satisfy these needs, it is essential to develop a system which can provide an efficient storing, managing and retrieving mechanism of complex multimedia data, esp. video data. In this paper, we propose a metadata model which can support content-based retrieval of video data. And we design and implement an integrated user interface for querying and browser for content-based retrieval in video database which can efficiently access and browse the video clip that user want to see. Proposed query processor and browser can support various user queries by integrating image feature, spatial temporal feature and annotation. Our system supports structure browsing of retrieved result, so users can more exactly and efficiently access relevant video clip. Without browsing the whole video clip, users can know the contents of video by seeing the storyboard. This storyboard facility makes users know more quickly the content of video clip.

  • PDF

Shadow Classification for Detecting Vehicles in a Single Frame (단일 프레임에서 차량 검출을 위한 그림자 분류 기법)

  • Lee, Dae-Ho;Park, Young-Tae
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.11
    • /
    • pp.991-1000
    • /
    • 2007
  • A new robust approach to detect vehicles in a single frame of traffic scenes is presented. The method is based on the multi-level shadow classification, which has been shown to have the capability of extracting correct shadow shapes regardless of the operating conditions. The rationale of this classification is supported by the fact that shadow regions underneath vehicles usually exhibit darker gray level regardless of the vehicle brightness and illuminating conditions. Classified shadows provide string clues on the presence of vehicles. Unlike other schemes, neither background nor temporal information is utilized; thereby the performance is robust to the abrupt change of weather and the traffic congestion. By a simple evidential reasoning, the shadow evidences are combined with bright evidences to locate correct position of vehicles. Experimental results show the missing rate ranges form 0.9% to 7.2%, while the false alarm rate is below 4% for six traffic scenes sets under different operating conditions. The processing speed for more than 70 frames per second could be obtained for nominal image size, which makes the real-time implementation of measuring the traffic parameters possible.

Metadata-Based Data Structure Analysis to Optimize Search Speed and Memory Efficiency (검색 속도와 메모리 효율 최적화를 위한 메타데이터 기반 데이터 구조 분석)

  • Kim Se Yeon;Lim Young Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.7
    • /
    • pp.311-318
    • /
    • 2024
  • As the amount of data increases due to the development of artificial intelligence and the Internet, data management is becoming increasingly important, and the efficient utilization of data retrieval and memory space is crucial. In this study, we investigate how to optimize search speed and memory efficiency by analyzing data structure based on metadata. As a research method, we compared and analyzed the performance of the array, association list, dictionary binary tree, and graph data structures using metadata of photographic images, focusing on temporal and space complexity. Through experimentation, it was confirmed that dictionary data structure performs best in collection speed and graph data structure performs best in search speed when dealing with large-scale image data. We expect the results of this paper to provide practical guidelines for selecting data structures to optimize search speed and memory efficiency for the images data.

Automated Improvement of RapidEye 1-B Geo-referencing Accuracy Using 1:25,000 Digital Maps (1:25,000 수치지도를 이용한 RapidEye 위성영상의 좌표등록 정확도 자동 향상)

  • Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.505-513
    • /
    • 2014
  • The RapidEye can acquire the 6.5m spatial resolution satellite imagery with the high temporal resolution on each day, based on its constellation of five satellites. The image products are available in two processing levels of Basic 1B and Ortho 3A. The Basic 1B image have radiometric and sensor corrections and include RPCs (Rational Polynomial Coefficients) data. In Korea, the geometric accuracy of RapidEye imagery can be improved, based on the scaled national digital maps that had been built. In this paper, we present the fully automated procedures to georegister the 1B data using 1:25,000 digital maps. Those layers of map are selected if the layers appear well in the RapidEye image, and then the selected layers are RPCs-projected into the RapidEye 1B space for generating vector images. The automated edge-based matching between the vector image and RapidEye improves the accuracy of RPCs. The experimental results showed the accuracy improvement from 2.8 to 0.8 pixels in RMSE when compared to the maps.

Application of the Rule-Based Image Classification Method to Jeju Island (규칙기반 영상분류 방법의 제주도 지역의 적용)

  • Lee, Jin-A;Lee, Sung-Soon
    • Spatial Information Research
    • /
    • v.21 no.1
    • /
    • pp.63-73
    • /
    • 2013
  • Geographic features are reflected in satellite images, which contain characteristic elements. Information on changes can be obtained through a comparison of images taken at different times. If multi-temporal images can be classified through the use of an unsupervised method, this is likely to improve the accuracy of image classification and contribute to various applications. A rule-based image classification algorithm for automatic processing without human involvement has been developed, but it must be verified that its results are not affected by imperfect elements. In this study, Landsat images of Jeju Island were used to carry out a rule-based image classification. The application results were examined for complex cases, including the presence of clouds in the images, different photographed times, and the type of target area, such as city, mountain, or field. The presence of clouds did not affect calculations, and appropriate classification rules were applied, depending on the different photographed times. The expansion of the urban areas of Jeju and the increase of facilities such as vinyl greenhouses in Seoguipo were identified. Furthermore, space information changes and accurate classifications for Jeju Island were obtained. With the goal of performing high-quality unsupervised classifications, measures to generalize and improve the methods employed were searched for. The findings of this study could be used in time-series analyses of images for various applications, including urban development and environmental change monitoring.

Neural Basis Involved in the Interference Effects During Dual Task: Interaction Between Calculation and Memory Retrieval (이중과제 수행시의 간섭효과에 수반되는 신경기반: 산술연산과 기억인출간의 상호작용)

  • Lee, Byeong-Taek;Lee, Kyoung-Min
    • Korean Journal of Cognitive Science
    • /
    • v.18 no.2
    • /
    • pp.159-178
    • /
    • 2007
  • Lee & Kang (2002) showed that simultaneous phonological rehearsal significantly delayed the performance of multiplication but not subtraction, whereas holding an image in the memory delayed subtraction but not multiplication. This result indicated that arithmetic function is related to working memory in a subsystem-specific manner. The aim of the current study was to examine the neural correlates of previous finding using fMRI. For this goal, dual task conditions that required suppression or no suppression were manipulated. In general, several areas were more activated in the interference conditions than in the less interference conditions, although both conditions were dual condition. More important finding is that the specific areas activated in the phonological suppression rendition were right inferior frontal gyrus, left angular, and inferior parietal lobule, while the areas activated in the other condition were mainly in the right superior temporal gyrus and anterior cingulate gyrus. Furthermore, the areas activated in the phonological or visual less suppression condition were right medial frontal gyrus, left middle frontal gyrus, and bilateral medial frontal gyri, anterior cingulate cortices, and parahippocampal gyri, respectively. These results revealed that sharing the processing code invokes interference, and its neural basis.

  • PDF

Context-Dependent Video Data Augmentation for Human Instance Segmentation (인물 개체 분할을 위한 맥락-의존적 비디오 데이터 보강)

  • HyunJin Chun;JongHun Lee;InCheol Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.5
    • /
    • pp.217-228
    • /
    • 2023
  • Video instance segmentation is an intelligent visual task with high complexity because it not only requires object instance segmentation for each image frame constituting a video, but also requires accurate tracking of instances throughout the frame sequence of the video. In special, human instance segmentation in drama videos has an unique characteristic that requires accurate tracking of several main characters interacting in various places and times. Also, it is also characterized by a kind of the class imbalance problem because there is a significant difference between the frequency of main characters and that of supporting or auxiliary characters in drama videos. In this paper, we introduce a new human instance datatset called MHIS, which is built upon drama videos, Miseang, and then propose a novel video data augmentation method, CDVA, in order to overcome the data imbalance problem between character classes. Different from the previous video data augmentation methods, the proposed CDVA generates more realistic augmented videos by deciding the optimal location within the background clip for a target human instance to be inserted with taking rich spatio-temporal context embedded in videos into account. Therefore, the proposed augmentation method, CDVA, can improve the performance of a deep neural network model for video instance segmentation. Conducting both quantitative and qualitative experiments using the MHIS dataset, we prove the usefulness and effectiveness of the proposed video data augmentation method.

Application of UAV-based RGB Images for the Growth Estimation of Vegetable Crops

  • Kim, Dong-Wook;Jung, Sang-Jin;Kwon, Young-Seok;Kim, Hak-Jin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.45-45
    • /
    • 2017
  • On-site monitoring of vegetable growth parameters, such as leaf length, leaf area, and fresh weight, in an agricultural field can provide useful information for farmers to establish farm management strategies suitable for optimum production of vegetables. Unmanned Aerial Vehicles (UAVs) are currently gaining a growing interest for agricultural applications. This study reports on validation testing of previously developed vegetable growth estimation models based on UAV-based RGB images for white radish and Chinese cabbage. Specific objective was to investigate the potential of the UAV-based RGB camera system for effectively quantifying temporal and spatial variability in the growth status of white radish and Chinese cabbage in a field. RGB images were acquired based on an automated flight mission with a multi-rotor UAV equipped with a low-cost RGB camera while automatically tracking on a predefined path. The acquired images were initially geo-located based on the log data of flight information saved into the UAV, and then mosaicked using a commerical image processing software. Otsu threshold-based crop coverage and DSM-based crop height were used as two predictor variables of the previously developed multiple linear regression models to estimate growth parameters of vegetables. The predictive capabilities of the UAV sensing system for estimating the growth parameters of the two vegetables were evaluated quantitatively by comparing to ground truth data. There were highly linear relationships between the actual and estimated leaf lengths, widths, and fresh weights, showing coefficients of determination up to 0.7. However, there were differences in slope between the ground truth and estimated values lower than 0.5, thereby requiring the use of a site-specific normalization method.

  • PDF