Abstract
Geographic features are reflected in satellite images, which contain characteristic elements. Information on changes can be obtained through a comparison of images taken at different times. If multi-temporal images can be classified through the use of an unsupervised method, this is likely to improve the accuracy of image classification and contribute to various applications. A rule-based image classification algorithm for automatic processing without human involvement has been developed, but it must be verified that its results are not affected by imperfect elements. In this study, Landsat images of Jeju Island were used to carry out a rule-based image classification. The application results were examined for complex cases, including the presence of clouds in the images, different photographed times, and the type of target area, such as city, mountain, or field. The presence of clouds did not affect calculations, and appropriate classification rules were applied, depending on the different photographed times. The expansion of the urban areas of Jeju and the increase of facilities such as vinyl greenhouses in Seoguipo were identified. Furthermore, space information changes and accurate classifications for Jeju Island were obtained. With the goal of performing high-quality unsupervised classifications, measures to generalize and improve the methods employed were searched for. The findings of this study could be used in time-series analyses of images for various applications, including urban development and environmental change monitoring.
지형지물은 각각의 특징적 요인을 내포하고 있어 촬영된 위성영상에 반영된다. 촬영시기가 다른 영상을 통하여 변화에 대한 정보를 얻을 수 있다. 다중시기 영상을 무감독 방법으로 분류할 수 있다면 영상 분류의 정확도를 높여 주고, 여러 응용분야에 기여할 수 있다. 규칙기반 영상분류 알고리즘은 사람의 직접적인 개입이 없이 자동화된 방법으로 처리 되도록 개발되었으나, 불완전 요소에 결과가 영향 받는지 확인되어야 한다. 이 연구에서는 제주도 지역의 Landsat 영상으로 규칙기반 영상분류를 수행하였다. 영상의 구름의 존재하고 촬영시기의 차이가 있는 경우, 대상지가 도시, 산지, 농지 등 복합적인 경우에 대하여 적용 결과를 확인하였다. 구름이 있는 부분의 경우, 계수에 영향을 주지 않았으며, 촬영시기의 차이에 따라 분류규칙이 적절이 반영되었다. 제주시 도시지역의 확장, 서귀포시의 비닐하우스 등의 시설물 개체 수 증가 등을 파악 할 수 있었다. 제주도 지역의 공간정보 변화 파악과 분류 정확도를 얻을 수 있었다. 양질의 무감독 분류가 수행되는 것을 목표로 하여 방법의 일반화 및 개선방안을 모색하고자 하였다. 향후 도시개발, 환경변화 모니터링 등 영상 시계열 분석에 다양하게 활용될 수 있을 것이다.