• Title/Summary/Keyword: Temporal gait variables

Search Result 31, Processing Time 0.022 seconds

Effects of Unilateral Static Stretching on Flexibility and Symmetry of Lower Leg, and Temporal Gait Variables in Gait Asymmetry People (편측 정적스트레칭이 보행 비대칭자의 하지 유연성과 대칭성 및 시간적 보행 변인에 미치는 영향)

  • Kwon, Young-Ae;Yoo, Kyung-Tae;Lee, Ho-Seong
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.3
    • /
    • pp.89-98
    • /
    • 2020
  • PURPOSE: This study investigated the effects of unilateral static stretching on the flexibility and symmetry of the lower leg, and temporal gait variables in gait asymmetry people. METHODS: Twenty gait asymmetry people were divided into a unilateral static stretching group (USG, n = 10) and control group (CON, n = 10). The USG performed unilateral static stretching for 60 minutes, three times a week, and eight weeks. The flexibility of the lower leg (SR), and symmetry (BR), and temporal gait variables (Step length; SL, gait speed; GS) were measured before, after four and eight weeks of unilateral static stretching. Moreover, SI (symmetry index; SI) was calculated from the measured SL value. Statistical analyses were conducted using one-way ANOVA and two-way ANOVA with repeated measures, a paired t-test, and multiple comparisons according to Scheffe. RESULTS: SR and BR in the dominant and non-dominant side, and GS were increased significantly at USG after eight-weeks compared to before unilateral static stretching (p < .05). The difference in BR in the dominant and non-dominant side, and step length (SI) decreased significantly at USG after eight-weeks compared to before unilateral static stretching (p < .05). CONCLUSION: Unilateral static stretching improves the flexibility and symmetry of the lower leg, and temporal gait variables in gait asymmetry people.

Effect of Trans cranial Directed Current Stimulus on Temporal and Spatial Walking Capacity for Hemiparalysis Patients (경 두개 직류자극이 뇌졸중 환자의 시간적, 공간적 보행능력에 미치는 영향)

  • Lee, Yeon Seop;Jun, Hun Ju
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.3
    • /
    • pp.75-84
    • /
    • 2022
  • Background: This study was to investigate the effect of non-invasive transcranial direct current stimulation due to hemiplegic patients due to stroke on temporal and spatial gait ability. Design: Randomized sham controlled trial. Methods: For the study method, 42 patients with hemiplegia due to stroke were randomly assigned to 14 patients each, and the general walking group, tDCS walking group, and tDCS (sham) walking group were subjected to 5 times a week, 30 minutes a day, and 6 weeks. In the temporal gait variables of hemiplegic patients due to stroke, the effect of the gait time, gait cycle, single support, double support, swing phase, stance phase, gait speed, cadence were measured. In spatial variables, one step length and one step length were measured. Results: As a result of the study, the EG group significantly increased in the step time, gait velocity, and cadence of the paralysis side in the comparison of temporal walking variables between groups according to the application of tDCS of walking ability in hemiplegic patients due to stroke patients(p<.05). In the change in spatial walking variables between groups according to the application of tDCS, the step length and stride length of the EG group showed a significant increase. Both the comparison of temporal and spatial symmetry walking variables between groups according to tDCS application was not significant(p>.05) Conclusion: As a result, tDCS has an effective effect on the improvement of the gait ability of stroke patients. In particular, it is an effective method of physical therapy that can improve the cadence and speed of gait, which can be combined with the existing gait training to effectively increase the gait of hemiplegia due to stroke patients.

Analysis of Obstacle Gait Using Spatio-Temporal and Foot Pressure Variables in Children with Autism (자폐성 장애 아동의 시공간 및 압력분포 변인을 통한 장애물보행 분석)

  • Kim, Mi-Young;Choi, Bum-Kwon;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.459-466
    • /
    • 2011
  • The purpose of this study was to analyze of obstacle gait using spatio-temporal and foot pressure variables in children with autism. Fifteen children with autism and fifteen age-matched controls participated in the study. Spatio-temporal and foot pressure variables was investigated using GAITRite pressure sensor system. Each footprint was divided into 12 equal trapezoids and after that the hindfoot, midfoot and forefoot analysis was developed. Independent t-test was applied to compare the gait variables between the groups. The results showed that the autism group were significantly decreased in velocity, cadence, cycle and swing time compared to the control group. The autism group were significantly increased in step width and toe out angle compared to the control group. The autism group were significantly increased at midfoot and forefoot of lateral part of footprint and forefoot of medial part of footprint in the peak time compared to the control group. The autism group were significantly increased at midfoot and hindfoot in $P^*t$, at midfoot in active area, and at hindfoot in peak pressure compared to the control group. In conclusion, the children with autism showed abnormal obstacle gait characteristics due to muscle hypotonia, muscle rigidity, akinesia, bradykinesia and postural control impairments.

Influence of Smart Phone Use on Gait Pattern in Healthy Adults (스마트폰 사용이 건강한 성인의 보행패턴에 미치는 영향)

  • Moon, Jong-Hoon;Kim, Sung-Hyun;Na, Chang-Ho;Hong, Deok-Gi;Heo, Sung-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.199-206
    • /
    • 2018
  • This study was to investigate the Influence of smart phone use on gait in healthy adults. Twenty healthy adults were recruited in this study. All subjects performed twice for each normal gait and smart phone gait. The normal gait walked at their chosen speed, and the smart phone gait walked while watching the video. GAITRite system was used to identify the temporal and spatial variables related to the gait pattern during walking. Statistical analysis was analyzed by paired t-test. In comparison of temporal variables, smart phone gait was significantly lower in gait speed and cadence than in normal gait(p<.05), and was significantly longer in single support time and double support time(p<.05). In comparison of spatial variables, smart phone gait was significantly shorter in step length and stride length than in normal gait(p<.05) and significantly longer in step width(p<.05). The results of this study demonstrated that smartphone use can negatively affect the correct gait patterns during walking.

Development of a Wearable Inertial Sensor-based Gait Analysis Device Using Machine Learning Algorithms -Validity of the Temporal Gait Parameter in Healthy Young Adults-

  • Seol, Pyong-Wha;Yoo, Heung-Jong;Choi, Yoon-Chul;Shin, Min-Yong;Choo, Kwang-Jae;Kim, Kyoung-Shin;Baek, Seung-Yoon;Lee, Yong-Woo;Song, Chang-Ho
    • PNF and Movement
    • /
    • v.18 no.2
    • /
    • pp.287-296
    • /
    • 2020
  • Purpose: The study aims were to develop a wearable inertial sensor-based gait analysis device that uses machine learning algorithms, and to validate this novel device using temporal gait parameters. Methods: Thirty-four healthy young participants (22 male, 12 female, aged 25.76 years) with no musculoskeletal disorders were asked to walk at three different speeds. As they walked, data were simultaneously collected by a motion capture system and inertial measurement units (Reseed®). The data were sent to a machine learning algorithm adapted to the wearable inertial sensor-based gait analysis device. The validity of the newly developed instrument was assessed by comparing it to data from the motion capture system. Results: At normal speeds, intra-class correlation coefficients (ICC) for the temporal gait parameters were excellent (ICC [2, 1], 0.99~0.99), and coefficient of variation (CV) error values were insignificant for all gait parameters (0.31~1.08%). At slow speeds, ICCs for the temporal gait parameters were excellent (ICC [2, 1], 0.98~0.99), and CV error values were very small for all gait parameters (0.33~1.24%). At the fastest speeds, ICCs for temporal gait parameters were excellent (ICC [2, 1], 0.86~0.99) but less impressive than for the other speeds. CV error values were small for all gait parameters (0.17~5.58%). Conclusion: These results confirm that both the wearable inertial sensor-based gait analysis device and the machine learning algorithms have strong concurrent validity for temporal variables. On that basis, this novel wearable device is likely to prove useful for establishing temporal gait parameters while assessing gait.

Effects of Close Kinetic Chain Resistant Exercise of Lower Extremity on the Gait with Stroke (닫힌 사슬 하지 저항운동이 뇌졸중 환자의 보행에 미치는 영향)

  • Moon, Sang-Hun;Kim, Young-Min
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.4
    • /
    • pp.475-483
    • /
    • 2014
  • PURPOSE: The purpose of the study was to determine the effects of close kinetic chain resistant exercise of lower extremity on the gait with stroke patients. METHODS: The subjects were 50 patients who were diagnosed with cerebrovascular accident. They were randomly assigned either to a close kinetic chain resistant exercise of lower extremity group (study group)(n=25) or open kinetic chain resistant exercise of lower extremity exercise group (control group)(n=25). Gait abilities were measured by using Timed Up & Go (TUG) test, Functional Gait Assessment (FGA) and spatio-temporal gait variable that were velocity, cadence, stride length, double limb support by 3 axises wireless accelerometer and sway angle of center of mass by same instrument. RESULTS: Study group and control group before and after the intervention there were significantly difference in TUG, FGA, spatio-temporal gait variables and sway angle of center of mass (p<.05). There were significantly different between study group and control group for all variables at post-exercise. CONCLUSION: When all is said and done it is expected to be used as a method for the treatment and prevention in the process of rehabilitation of patients with stroke. In its final analysis when applying resistant exercise of lower extremity to stroke patients' gait, close kinetic chain is more effective than open kinetic chain.

Effects of Functional Electrical Stimulation (FES) on the Temporal-spatial Gait Parameters and Activities of Daily Living in Hemiplegic Stroke Patients

  • Oh, Dong-Gun;Yoo, Kyung-Tae
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.3
    • /
    • pp.37-44
    • /
    • 2021
  • PURPOSE: This study examined the effects of functional electrical stimulation (FES) on temporal-spatial gait and the activities of daily living in hemiplegic stroke patients. METHODS: The subjects were 29 hemiplegic stroke patients (57.7 ± 10.3). The patients walked at a self-controlled speed in four states: (1) walking without FES (non-FES), (2) walking with FES on the gluteus medius in the stance phase (GM), (3) walking with FES on the common peroneal nerve and tibialis anterior in the swing phase (PT), (4) walking with both GM and PT. A GAITRite system, Timed-Functional Movements battery, and Timed UP and Go test were used to measure the variables. RESULTS: Significant improvements were observed in all variables of the GM+PT, GM, and PT states compared to the non-FES state (p < .05). There were significant improvements in the GM+PT state compared to GM and PT states (p < .05). Moreover, significant improvements were noted in the single support time on the affected side, backward walking 10ft, and side stepping 10ft on the affected side of the GM state compared to the PT state (p < .05). There were significant improvements in the stride length on the affected side and side stepping 10ft on the unaffected side of the PT state compared to the GM state (p < .05). CONCLUSION: FES is effective in improving the temporal-spatial gait and activities of daily living in hemiplegic stroke patients.

The Effects of Using Cane on Hemiplegic Gait of Strock Patients (뇌졸증으로 인한 편마비 보행의 시간적 공간적 요소 분석: 지팡이가 보행에 미치는 영향)

  • Lee hyun-ok;Kim byung-jo
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.4
    • /
    • pp.372-383
    • /
    • 2003
  • The purpose of this study was to assess of cane use on the hemiplegic gait of strock patients in temporal and spatial variables. Subjects were thirteen including 8 men and 5 women. They could walk independently without cane, To compare the effect of walking with and without a cane, temporal and spatial variables was measured using GAITRite. Cane walking demonstrated increased stance time on the affected side, and swing time, step length on the sound side were increased, and base of support was decreased. In conclusion, hemiplegic gait pattern of strock patients were improved with cane than those not using a cane.

  • PDF

The Effects of Start and Finish Distance on the Gait Variables during Walking (보행 시작과 멈추는 거리가 보행 변인에 미치는 영향)

  • Lim, Bee-Oh;An, Seung-Hyun;Lee, Sang-Woo;Do, In-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.17-27
    • /
    • 2007
  • It is essential for gait analysis to know the distance information. The purpose of this study was to investigate the effects of start and finish distance on the gait variable during walking. Six adolescent participated in this study. Start condition was given by six conditions.: walking forward from (1) one step, (2) three steps, (3) five steps, (4) ten steps, (5) one step after standing walk, and (6) three steps after standing walk, before contacting the force plate. Stop condition was given by four conditions. : stop after (1) one step, (2) two steps, (3) three steps, and (4) ten steps, passing force plate. Repeated measured one-way ANOVA was utilized for data analysis, and the significant level was set at .05. The largest change from the difference of gait velocity exists between the variables of ground reaction force. There were no significant differences in spatio-temporal and posture(angle) variables, as well as ground reaction force variables with walking over the three steps. There were significant differences in gait velocity, knee angle at heel contact, vertical impulse and ankle angle at toe off in short distance.

Effects of Y-Balance Exercise on Spatio-temporal Gait Parameters in Subjects with Chronic Ankle Instability (Y-균형 운동이 만성적 발목 불안정성을 가진 사람들의 시거리 보행 변수에 미치는 영향)

  • Geun Tae Park;Min Ji Kang;Jin Tae Han
    • Journal of Korean Physical Therapy Science
    • /
    • v.31 no.1
    • /
    • pp.70-87
    • /
    • 2024
  • Background: This study aimed to investigate the effect of Y-balance exercise on spatio-temporal gait parameters in subjects with chronic ankle instability. Design: Randomized Controlled Trial. Method: A study was conducted on 43 people with chronic ankle instability. Subjects performed modified Y-balance exercise 3 times a week for 50 minutes, 4 weeks. Gait parameters were measured using a gait analysis treadmill before exercise, 2 weeks after exercise, and 4 weeks after exercise. A gait analysis treadmill (FDM-T AP1171, Zebris, Germany) was used to measure gait parameters. Mean values were compared using Repeated measured two-way ANOVA. Result:: When comparing the results of three measurements taken before exercise, 2 weeks after exercise, and 4 weeks after exercise, there were significant differences in the qualitative and quantitative aspects of gait in gait variables such as step distance, step time, step ratio, and sway ratio. Conclusions: These results suggest that the Y-balance exercise and various exercises combining balance and proprioception are effective for subjects with chronic ankle instability.