• 제목/요약/키워드: Temporal data

검색결과 2,896건 처리시간 0.03초

황사의 확산예측을 위한 기상정보의 시간해상도에 관한 수치연구 (Numerical study on temporal resolution of meteorological information for prediction of Asian dust)

  • 이순환;곽은영;류찬수;문윤섭
    • 한국환경과학회지
    • /
    • 제13권10호
    • /
    • pp.891-902
    • /
    • 2004
  • In order to predict air pollution and Yellow-sand dispersion precisely, it is necessary to clarify the sensitivity of meteorological field input interval. Therefore numerical experiment by atmospheric dynamic model(RAMS) and atmospheric dispersion model(PDAS) was performed for evaluating the effect of temporal and spatial resolution of meteorological data on particle dispersion. The results are as follows: 1) Base on the result of RAMS simulation, surface wind direction and speed can either synchronize upper wind or not. If surface wind and upper wind do not synchronize, precise prediction of Yellow-sand dispersion is strongly associated with upwelling process of sand of particle. 2) There is no significant discrepance in distribution of particle under usage of difference temporal resolution of meteorological information at early time of simulation, but the difference of distribution of particles become large as time goes by. 3) There is little difference between calculated particles distributions in dispersion experiments with high temporal resolution of meteorological data. On the other hand, low resolution of meteorological data occur the quantitative difference of particle density and there is strong tendency to the quantitative difference.

모음-자음-모음 연결에서 자음의 조음특성과 모음-모음 동시조음 (Consonantal Production and V-to-V Coarticulation in Korean VCV Sequences)

  • 신지영
    • 음성과학
    • /
    • 제1권
    • /
    • pp.55-81
    • /
    • 1997
  • In the present paper, V-to-V coarticulation in Korean VCV sequences is discussed, focusing on links between consonantal production and degree of V-to-V coarticulation. Temporal and spatial differences between three types of Korean alveolar stops (lax /t/. aspirated /$t^h$/ and thense /t'/) are examined from VCV sequences involving all possible combinations of three Korean unrounded vowels /a, i,/ based on spectrographic and electrographic data(two male speakers and one female speaker and one female speaker respectively). Closure duration and voice onset time (VOT) were measured from acoustic data. 'Total duration', which is defined as the sum of the closure duration and the VOT, was also calculated in order to see the temporal distance between two vowels in a VCV sequence. Differences in lingual-palatal contact pattern at the maximum contact (MC) point between the three types of stop were observed from EPG data. V-to-V coarticulation was investigated by measuring the offset or onset of the second formant (F2) of the target vowels from spectrograms. Two different dimensions of articulation, temporal and spatial, seem to playa role in determining the degree of V-to-V coarticulation. The degree of V-to-V anticipatory coarticulation is influenced by the spatial characteristics of the intervening consonant while the degree of carryover coarticulation is influenced by the temporal characteristics of the consonant.

  • PDF

작물 모니터링을 위한 다중 센서 고해상도 위성영상의 시공간 융합 모델의 평가: Sentinel-2 및 RapidEye 영상 융합 실험 (Evaluation of Spatio-temporal Fusion Models of Multi-sensor High-resolution Satellite Images for Crop Monitoring: An Experiment on the Fusion of Sentinel-2 and RapidEye Images)

  • 박소연;김예슬;나상일;박노욱
    • 대한원격탐사학회지
    • /
    • 제36권5_1호
    • /
    • pp.807-821
    • /
    • 2020
  • 이 연구에서는 작물 모니터링을 위한 시계열 고해상도 영상 구축을 위해 기존 중저해상도 위성영상의 융합을 위해 개발된 대표적인 시공간 융합 모델의 적용성을 평가하였다. 특히 시공간 융합 모델의 원리를 고려하여 입력 영상 pair의 특성 차이에 따른 모델의 예측 성능을 비교하였다. 농경지에서 획득된 시계열 Sentinel-2 영상과 RapidEye 영상의 시공간 융합 실험을 통해 시공간 융합 모델의 예측 성능을 평가하였다. 시공간 융합 모델로는 Spatial and Temporal Adaptive Reflectance Fusion Model(STARFM), SParse-representation-based SpatioTemporal reflectance Fusion Model(SPSTFM)과 Flexible Spatiotemporal DAta Fusion(FSDAF) 모델을 적용하였다. 실험 결과, 세 시공간 융합 모델은 예측 오차와 공간 유사도 측면에서 서로 다른 예측 결과를 생성하였다. 그러나 모델 종류와 관계없이, 예측 시기와 영상 pair가 획득된 시기 사이의 시간 차이보다는 예측 시기의 저해상도 영상과 영상 pair의 상관성이 예측 능력 향상에 더 중요한 것으로 나타났다. 또한 작물 모니터링을 위해서는 오차 전파 문제를 완화할 수 있는 식생지수를 시공간 융합의 입력 자료로 사용해야 함을 확인하였다. 이러한 실험 결과는 작물 모니터링을 위한 시공간 융합에서 최적의 영상 pair 및 입력 자료 유형의 선택과 개선된 모델 개발의 기초정보로 활용될 수 있을 것으로 기대된다.

모바일 환경에서 동시 양방향 동기화 프로토콜의 설계 (The Design of Cocurrent Two-Way Synchronizations Protocol on a Mobile Environments)

  • 김홍기;김동현
    • 한국정보통신학회논문지
    • /
    • 제12권12호
    • /
    • pp.2226-2231
    • /
    • 2008
  • 모바일 기기와 무선 통신 기술이 발달함에 따라 모바일 기기에서 수집 또는 변경되는 대용량 시공간 데이터를 서버와 현장에서 동기화하는 서비스의 제공이 가능해졌다. 다수의 모바일 기기에서 변경된 대용량 시공간 데이터를 서버와 동기화하는 효율적인 양방향 동기화 프로토콜이 필요하다. 그러나 다수의 모바일 기기에 대하여 동기화 작업을 수행할 때 처리 시간이 길어지는 문제가 있다. 이 논문에서는 다수의 양방향 동기화 작업에 대하여 다중 큐를 이용하여 서버에서 동시 수행하는 처리기법에 대하여 제안한다.

Adaptive Reconstruction Of AVHRR NVI Sequential Imagery off Korean Peninsula

  • Lee, Sang-Hoon;Kim, Kyung-Sook
    • 대한원격탐사학회지
    • /
    • 제10권2호
    • /
    • pp.63-82
    • /
    • 1994
  • Multitemporal analysis with remotely sensed data is complicated by numerous intervening factors, including atmospheric attenuation and occurrence of clouds that obscure the relationship between ground and satellite observed spectral measurements. A reconstruction system was developed to increase the discrimination capability for imagery that has been modified by residual dffects resulting from imperfect sensing of the target and by atmospheric attenuation of the signal. Utilizing temporal information based on an adaptive timporal filter, it recovers missing measurements resulting from cloud cover and sensor noise and enhances the imagery. The temporal filter effectively tracks a systematic trend in remote sensing data by using a polynomial model. The reconstruction system were applied to the AVHRR data collected over Korean Peninsula. The results show that missing measurements are typically recovered successfully and the temporal trend in vegetation change is exposed clearly in the reconstructed series.

Advanced Machine Learning Approaches for High-Precision Yield Prediction Using Multi-temporal Spectral Data in Smart Farming

  • Sungwook Yoon
    • International journal of advanced smart convergence
    • /
    • 제13권3호
    • /
    • pp.335-344
    • /
    • 2024
  • This study explores advanced machine learning techniques for improving crop yield prediction in smart farming, utilizing multi-temporal spectral data from drone-based multispectral imagery. Conducted in garlic orchards in Andong, Gyeongbuk Province, South Korea, the research examines the effectiveness of various vegetation indices and cutting-edge models, including LSTM, CNN, Random Forest, and XGBoost. By integrating these models with the Analytic Hierarchy Process (AHP), the study systematically evaluates the factors that influence prediction accuracy. The integrated approach significantly outperforms single models, offering a more comprehensive and adaptable framework for yield prediction. This research contributes to precision agriculture by providing a robust, AI-driven methodology that enhances the sustainability and efficiency of farming practices.

Data Correlation-Based Clustering Algorithm in Wireless Sensor Networks

  • Yeo, Myung-Ho;Seo, Dong-Min;Yoo, Jae-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권3호
    • /
    • pp.331-343
    • /
    • 2009
  • Many types of sensor data exhibit strong correlation in both space and time. Both temporal and spatial suppressions provide opportunities for reducing the energy cost of sensor data collection. Unfortunately, existing clustering algorithms are difficult to utilize the spatial or temporal opportunities, because they just organize clusters based on the distribution of sensor nodes or the network topology but not on the correlation of sensor data. In this paper, we propose a novel clustering algorithm based on the correlation of sensor data. We modify the advertisement sub-phase and TDMA schedule scheme to organize clusters by adjacent sensor nodes which have similar readings. Also, we propose a spatio-temporal suppression scheme for our clustering algorithm. In order to show the superiority of our clustering algorithm, we compare it with the existing suppression algorithms in terms of the lifetime of the sensor network and the size of data which have been collected in the base station. As a result, our experimental results show that the size of data is reduced and the whole network lifetime is prolonged.

시공간 데이타베이스에서 다차원 시퀀스 데이타의 선택도추정 (Selectivity Estimation for Multidimensional Sequence Data in Spatio-Temporal Databases)

  • 신병철;이종연
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제34권1호
    • /
    • pp.84-97
    • /
    • 2007
  • 선택도 추정 기법은 질의 최적화를 위해 현재 상용 데이터 베이스에서 많이 사용되고 있고 히스토그램은 가장 많이 사용되는 선택도 추정 기법중의 하나이다. 최근에 시공간 데이터 베이스 관련 연구들에서 이러한 선택도 추정 기법이 기존의 시간 공간 데이타베이스 선택도 추정 기법을 확장하여 활발하게 연구되었다. 하지만 기존의 시공간 데이타베이스 선택도 추정 연구는 주로 이동 객체와 같은 시계열 데이타만 고려하였다. 또한 기존의 연구는 과거시점부터 현재 시점까지 시간적 범위 질의에 대한 선택도 추정은 불가능하였다. 따라서 본 논문에서는 시공간 데이타베이스에서 과거 시점에서 현재시점까지 시퀀스 데이타의 시간적 범위 질의를 위한 히스토그램을 구축하고 이를 이용한 효과적인 선택도 추정 기법을 제안한다. 제안한 히스토그램을 이용하면 과거부터 현재까지 시퀀스 데이타의 선택도 추정이 가능하고, 범위시간 선택도 추정 기법이 가능하며 효과적인 히스토그램 유지 기법의 적용이 가능하다.

시공간 데이타베이스의 엔트로피 기반 동적 히스토그램 (Entropy-based Dynamic Histogram for Spatio-temporal Databases)

  • 박현규;손진현;김명호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권2호
    • /
    • pp.176-183
    • /
    • 2003
  • 질의 최적화에 사용하기 위한 선택도 추정 방법은 히스토그램, 샘플링 그리고 패러미터에 의한 요약 방법 등이 제시되고 있다. 히스토그램을 이용한 선택도 추정은 상용 데이타베이스 시스템에서 가장 보편적으로 사용되는 방법이지만, 이동 객체를 위한 시공간 데이타베이스에서는 데이타 분포가 지속적으로 변화함으로써 기존의 히스토그램 방법을 이용하는 것은 제한이 많게 된다. 특히 미래 질의를 위해서는 데이타 갱신을 반영하는 동적 관리가 가능하며, 정화도를 유지할 수 있는 다른 접근 방법이 필요하다. 따라서 시공간 객체를 위한 선택도 추정 방법은 질의 술어가 요구하는 데이타 분포에 대한 히스토그램이 필요하며, 본 논문에서는 미래의 시공간 영역 질의 술어에 대하여 신속히 히스토그램을 생성할 수 있도록 쌍대성과 한계 분포 방법을 이용한 히스토그램을 제안한다. 쌍대 공간에서 이동 객체에 대한 데이타 시놉시스를 이용하여 구성된 시공간 히스토그램은 이동 궤적의 선형성이 유지하는 시간 동안 정확성을 보장하면서 빠른 시간에 생성이 가능하다. 또한 동적 갱신을 점증적으로 지원함으로써 효율적으로 갱신된 정보를 반영할 수 있고 추정 결과의 정확성을 향상시킬 수 있다.

연속 원격탐사 영상자료의 재구축과 변화 탐지 (Reconstruction and Change Analysis for Temporal Series of Remotely-sensed Data)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제18권2호
    • /
    • pp.117-125
    • /
    • 2002
  • 연속적으로 상대적으로 짧은 간격으로 관측된 시계열 원격탐사 자료는 관측환경의 악화와 감지 시스템의 기계적 고장과 같은 관측 장애요인에 의해 많은 미관측 및 악성 자료를 가지게 된다. 본 연구는 adaptive 재구축 시스템을 이용하여 동적합성에 의해 미관측 및 악성 자료를 복구하는 문제를 다루고 있다. 제안된 재구축 방법은 관측 대상의 물리적 특성에서의 시간적 변화와 공간적 연속 특성에 근거한 영상처리 기법이며, adaptive 시스템은 관측 값과 지엽적 시간적 경향에 의해 추정된 예측 티의 가중치 합에 의해 합성영상을 생성하는 동적합성을 수행한다. 제안된 동적합성기술의 adaptive 재구축 시스템은 한반도를 관측한 1999년도와 2000년도 2년간의 NOAA AVHRR의 NDVI자료의 재구축에 적용되었다. 실험결과는 재구축된 시리즈는 미관측 및 악성 자료를 포함하고 있는 실제의 관측 영상 시리즈를 위하여 추정된 완전한 자료 값을 갖는 영상 시리즈로 사용될 수 있음을 보여주고 있다. 추가적으로 제안 시스템은 해당 시간에서의 시간적 변화량을 나타내는 gradient 영상을 생성하고, 이러한 영상들의 연속 시리즈에서 관측 대상의 시계열 변화 특성이 관측 자료 값의 영상 시리즈보다 더욱 분명히 나타나고 있다.