Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.01a
/
pp.114-117
/
2009
A new video inpainting algorithm is proposed for removing unwanted objects or error of sources from video data. In the first step, the block bundle is defined by the motion information of the video data to keep the temporal consistency. Next, the block bundles are arranged in the 3-dimensional graph that is constructed by the spatial and temporal correlation. Finally, we pose the inpainting problem in the form of a discrete global optimization and minimize the objective function to find the best temporal bundles for the grid points. Extensive simulation results demonstrate that the proposed algorithm yields visually pleasing video inpainting results even in a dynamic scene.
The usefulness of the multi-temporal satellite image to monitoring the vegetation recovery process after forest fire was tested. Using multi-temporal Landsat TM and ETM+data, NDVI and NBR changes over times were analyzed. Both NDVI and NBR values were rapidly decreased after the fire and gradually increased for all forest type and damage class. However, NBR curve showed much clearer tendency of vegetation recovery than NDVI. Both indices yielded the lowest values in severely damaged red pine forest. The results show the vegetation recovery process after forest fire can detect and monitor using multi-temporal Landsat image. NBR was proved to be useful to examine the recovering and development process of the vegetation after fire. In the not damaged forest, however the NDVI shows more potential capability to discriminate the forest types than NBR..
In this study, a novel land-cover classification framework for multi-temporal SAR data is presented that can combine multiple features extracted through data transforms and multiple classifiers. At first, data transforms using principle component analysis (PCA) and 3D wavelet transform are applied to multi-temporal SAR dataset for extracting new features which were different from original dataset. Then, three different classifiers including maximum likelihood classifier (MLC), neural network (NN) and support vector machine (SVM) are applied to three different dataset including data transform based features and original backscattering coefficients, and as a result, the diverse preliminary classification results are generated. These results are combined via a majority voting rule to generate a final classification result. From an experiment with a multi-temporal ENVISAT ASAR dataset, every preliminary classification result showed very different classification accuracy according to the used feature and classifier. The final classification result combining nine preliminary classification results showed the best classification accuracy because each preliminary classification result provided complementary information on land-covers. The improvement of classification accuracy in this study was mainly attributed to the diversity from combining not only different features based on data transforms, but also different classifiers. Therefore, the land-cover classification framework presented in this study would be effectively applied to the classification of multi-temporal SAR data and also be extended to multi-sensor remote sensing data fusion.
VR(Virtual Reality) and AR(Augmented Reality) devices are becoming more common, and the need for proper contents presentation techniques in such environments has been growing ever since the popularization of the devices. One of the contents is the spatio-temporal data, which has become more prominent since it could be both generated and consumed by a large number of ordinary users. In this work, the researcher analyzed the characteristics of spatio-temporal data as a source for visualization in VR and AR environment, and categorized prior visualization methods for such data, which were devised for traditional monitors. The researcher also reviewed the hardware specification of state-of-the-art devices, and examined the possibility of adopting the previous visualization approaches. This work is expected to contribute in designing spatio-temporal visualization for VR and AR environment by utilizing their unique characteristics.
Li Jing Jing;Lee Dong-Wook;You Byeong-Seob;Oh Young-Hwan;Bae Hae-Young
Journal of Korea Multimedia Society
/
v.9
no.12
/
pp.1529-1541
/
2006
Moving objects have been widely employed in traffic and logistic applications. Spatio-temporal aggregations mainly describe the moving object's behavior in the spatial data warehouse. The previous works usually express the object moving in some certain region, but ignore the object often moving along as the trajectory. Other researches focus on aggregation and comparison of trajectories. They divide the spatial region into units which records how many times the trajectories passed in the unit time. It not only makes the storage space quite ineffective, but also can not maintain spatial data property. In this paper, a spatio-temporal aggregation index structure for moving object trajectory in constrained network is proposed. An extended B-tree node contains the information of timestamp and the aggregation values of trajectories with two directions. The network is divided into segments and then the spatial index structure is constructed. There are the leaf node and the non leaf node. The leaf node contains the aggregation values of moving object's trajectory and the pointer to the extended B-tree. And the non leaf node contains the MBR(Minimum Bounding Rectangle), MSAV(Max Segment Aggregation Value) and its segment ID. The proposed technique overcomes previous problems efficiently and makes it practicable finding moving object trajectory in the time interval. It improves the shortcoming of R-tree, and makes some improvement to the spatio-temporal data in query processing and storage.
KIPS Transactions on Computer and Communication Systems
/
v.1
no.1
/
pp.11-20
/
2012
Stream data shows a sequence of values changing continuously over time. Due to the nature of stream data, its trend is continuously changing according to various time intervals. Therefore the prediction of stream data must be carried out simultaneously with respect to multiple intervals, i.e. Continuous Multiple Prediction(CMP). In this paper, we propose a Continuous Integrated Hierarchical Temporal Memory (CIHTM) network for CMP based on the Hierarchical Temporal Memory (HTM) model which is a neocortex leraning algorithm. To develop the CIHTM network, we created three kinds of new modules: Shift Vector Senor, Spatio-Temporal Classifier and Multiple Integrator. And also we developed learning and inferencing algorithm of CIHTM network.
Choi, Yun Sub;Hwang, Sang-Wook;Yeo, Sang-Rae;Park, Chansik;Yang, Sung-Hoon;Lee, Sang Jeong
Journal of Positioning, Navigation, and Timing
/
v.2
no.2
/
pp.109-114
/
2013
The vulnerability of GPS to interference signals was reported in the early 2000s, and an eLORAN system has been suggested as a backup navigation system for replacing the existing GPS. Thus, relevant studies have been carried out in the United States, Europe, Korea, etc., and especially, in Korea, the research and development is being conducted for the FOC of the eLORAN system by 2018. The required performance of the eLORAN system is to meet the HEA performance, and to achieve this, it is essential to perform ASF correction based on a dLORAN system. ASF can be divided into temporal ASF, nominal ASF, and spatial ASF. Spatial ASF is the variation due to spatial characteristics, and is stored in an eLORAN receiver in the form of a premeasured map. Temporal ASF is the variations due to temporal characteristics, and are transmitted from a dLORAN site to a receiver via LDC. Unlike nominal ASF that is obtained by long-term measurement (over 1 year), temporal ASF changes in a short period of time, and ideally, real-time correction needs to be performed. However, it is difficult to perform real-time correction due to the limit of the transmission rate of the LDC for transmitting correction values. In this paper, to determine temporal ASF correction frequency that shows satisfactory performance within the range of the limit of data transmission rates, relative variations of temporal ASF in summer and winter were measured, and the stability of correction values was analyzed using the average of temporal ASF for a certain period.
KSCE Journal of Civil and Environmental Engineering Research
/
v.31
no.1B
/
pp.13-20
/
2011
The spatio-temporal pattern in precipitation is a significant element in defining characteristics of precipitation. In this study, a new scheme on regionalization utilizing temporal information was introduced on the basis of existing approaches that is mainly based on simple moments of data and geographical information. Given the identified spatio-temporal pattern, this study was extended to characterize regional pattern of annual maximum rainfall over Korea. We have used circular statistics to characterize the temporal distribution on the precipitation, and the circular statistics allow us to effectively assess changes in timing of the extreme rainfall in detail. In this study, a modified K-means method was incorporated with derived temporal characteristics of extreme rainfall in order to better characterize hydrologic pattern for regional frequency analysis. The extreme rainfall was reasonably separated into five categories that considered most attributes in both quantitative and temporal changes in extremes. The results showed that the proposed approach is a promising approach for regionalization in term of physical understanding of extreme rainfall.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.05a
/
pp.574-575
/
2018
The generation of redundant data according to the spatial-temporal correlation in a wireless sensor network that reduces the network lifetime by consuming unnecessary energy. In this paper, data collection experiment through the particulate matter sensor is carried out to confirm the spatial-temporal data redundancy and we propose permitted limit setting method for data transmission to solve this problem. In the proposed method, the data transmission permitted limit is set by using the integrated average value in the cluster. The set permitted limit reduces the redundant data of the member node and it is shows that redundant data reduction is possible even in a variable environment of collected data by resetting the permitted limit in the cluster head.
Multi-temporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land-cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. A harmonic model that can represent seasonal variability is characterized by four components: mean level, frequency, phase and amplitude. The trigonometric components of the harmonic function inherently contain temporal information about changes in land-cover characteristics. Using the estimates which are obtained from sequential images through spectral analysis, seasonal periodicity can be incorporates into multi-temporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 ~ 2000 using a dynamic technique. Land-cover types were then classified both with the estimated harmonic components using an unsupervised classification approach based on a hierarchical clustering algorithm. The results of the classification using the harmonic components show that the new approach is potentially very effective for identifying land-cover types by the analysis of its multi-temporal behavior.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.