• Title/Summary/Keyword: Temporal Mining

검색결과 120건 처리시간 0.024초

데이타 축소와 군집화를 사용하는 시공간 데이타의 이산화 기법 (Discretizing Spatio-Temporal Data using Data Reduction and Clustering)

  • 강주영;용환승
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권1호
    • /
    • pp.57-61
    • /
    • 2009
  • 항목 기반의 순차 패턴 마이닝 기법들을 시공간 데이타에 적용하기 위해서는 시공간 속성 값에 대한 적절한 이산화가 필수적이다. 본 논문에서는 입력 데이타의 시공간적 상판 정보를 유지함과 동시에 데이타 수를 축소시킴으로써 마이닝 프로세스의 효율성을 높이는 이산화 기법을 제안한다. 제안된 기법은 선 단순화를 사용하여 궤적에 대한 근사치를 구함으로써 마이넘 단계에서 처리할 데이터 크기를 축소시킨다. 또한 단순화 된 궤적을 유사한 시공간적 특성을 가지는 논리적 그룹으로 군집화하여 데이터의 분포를 고려한 이산화를 수행한다. 실험을 통해 제안된 기법이 마이넝 프로세스의 효율성을 높일 뿐 아니라 보다 직관적이고 해석이 용이한 패턴을 도출하는 것을 보였다.

Spatial and Temporal Analysis of Land-use Changes Associated with Past Mining in the Kitakyushu District, Japan

  • Rhee, Sungsu;Ling, Marisa Mei;Park, Junboum
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권4호
    • /
    • pp.40-49
    • /
    • 2013
  • In the beginning of $20^{th}$ century, the coal mining industry had an important role in Japan at which two-thirds of the coal product came from the Kitakyushu-Chikuho District (KCD). As a consequence of mining activities, land-use condition in this district showed notable changes. This paper presented a study of land-use changes in coal mining area by characterizing land-use pattern transition over the last 100 years. In order to carry out the rigorous analysis of land-use, a series of land-use maps over the last 100 years was developed using geographic information systems (GIS). The historic topographic map and another available old data were used to investigate the long-term changes of land-use associated with past mining within the GIS platform. The results showed that the utilization of a series of developed land-use maps successfully indicated the difference of land-use pattern in the KCD before and after the peak of mining activities. The general findings from land-use analysis described that forest and farm lands were lost and turned into abandoned sites in the last 100 years.

시공간 온톨로지를 이용한 능동 마이닝 프레임워크 설계 (An Active Mining Framework Design using Spatial-Temporal Ontology)

  • 황정희;노시춘
    • 한국산학기술학회논문지
    • /
    • 제11권9호
    • /
    • pp.3524-3531
    • /
    • 2010
  • 유비쿼터스 컴퓨팅 환경에서 사용자에게 최적의 서비스를 제공하기 위해서는 객체 그리고 사용자의 행위와 밀접한 연관이 있는 시공간 정보를 고려하는 것이 중요하다. 이를 위해 이 논문에서는 사용자의 상황을 고려하기 위한 시공간 온톨로지를 설계하고 이를 이용하여 사용자의 행동 및 서비스 패턴을 능동적으로 마이닝할 수 있는 시스템 구조를 제안한다. 제안된 시스템은 사용자의 시간에 따른 위치 및 객체와의 연관성을 고려하여 사용자의 행동과 서비스 패턴을 지능적으로 마이닝 하기 위한 프레임워크이고 트리거 시스템을 기반으로 한다.

시퀀스 빈발도와 가중치를 이용한 최적 이동 패턴 탐사 (Optimal Moving Pattern Mining using Frequency of Sequence and Weights)

  • 이연식;박성숙
    • 인터넷정보학회논문지
    • /
    • 제10권5호
    • /
    • pp.79-93
    • /
    • 2009
  • 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 개발하기 위한 목적으로 시공간 상에서 발생하는 이동 객체의 다양한 패턴들 중 의미있는 유용한 패턴을 추출하기 위한 시공간 패턴 탐사가 필요하다. 이에 본 논문에서는 방대한 이동 객체의 이력 데이터로부터 패턴 탐사를 통해 실세계에 적용 가능한 위치 기반 서비스의 개발에 대한 응용으로, STOMP(F)[25]에서 정의한 최적의 이동 패턴을 탐사하는 문제들을 기반으로 시간 및 공간 제약을 갖는 패턴을 추출하기 위한 새로운 탐사 기법인 STOMP(FW)를 제안한다. 제안된 기법은 패턴 빈발도 만을 이용한 기존 연구(STOMP(F)[25])에 가중치(거리, 시간, 비용 등)를 복합적으로 이용하는 패턴 탐사 방법으로, 특정한 지점들 사이를 이동한 객체의 이동 패턴들 중 패턴 빈발도가 특정 임계치 이상이고 가중치가 가장 적게 소요되는 이동 패턴을 최적 경로로 결정하는 방법이다. 제안된 방법의 패턴 탐사는 경험적인 이동 이력을 사용함으로써 기존의 최적 경로 탐색 기법들($A^*$, Dijkstra 알고리즘)이나 빈발도 만을 이용한 방법들 보다 접근하는 노드 수가 상대적으로 적어 보다 빠르고 정확하게 최적 패턴을 탐색할 수 있음을 보인다.

  • PDF

시간 속성을 갖는 이벤트 집합에서 인터벌 연관 규칙 마이닝 기법 (A Method for Mining Interval Event Association Rules from a Set of Events Having Time Property)

  • 한대영;김대인;김재인;나철수;황부현
    • 정보처리학회논문지D
    • /
    • 제16D권2호
    • /
    • pp.185-190
    • /
    • 2009
  • 시간 속성을 갖는 이벤트 집합에서 동일한 이벤트 타입에 대한 이벤트 시퀀스는 하나의 이벤트로 요약될 수 있다. 그러나 정의된 시간 간격이 경과된 후 발생된 이벤트 타입은 하나 이상의 독립된 서브 이벤트 시퀀스로 요약하는 것이 바람직하다. 본 논문은 Allen의 시간 관계 대수에 기반하여 인터벌 이벤트를 요약하고, 요약된 인터벌 이벤트들로부터 인터벌 연관 규칙을 찾아내는 새로운 시간 데이터 마이닝 기법을 제안한다. 제안하는 기법은 독립적인 서브 시퀀스 개념을 도입하고 인터벌 이벤트 사이의 연관 규칙을 탐사함으로써 질적으로 우수한 정보를 제공한다.

분산데이터베이스 환경하의 시간연관규칙 적용 (Discovery Temporal Association Rules in Distributed Database)

  • Yan Zhao;Kim, Long;Sungbo Seo;Ryu, Keun-Ho
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.115-117
    • /
    • 2004
  • Recently, mining far association rules in distributed database environments is a central problem in knowledge discovery area. While the data are located in different share-nothing machines, and each data site grows by time. Mining global frequent itemsets is hard and not efficient in large number of distributed sewen. In many distributed databases. time component(which is usually attached to transactions in database), contains meaningful time-related rules. In this paper, we design a new DTA(distributed temporal association) algorithm that combines temporal concepts inside distributed association rules. The algorithm confirms the time interval for applying association rules in distributed databases. The experiment results show that DTA can generate interesting correlation frequent itemsets related with time periods.

  • PDF

$R^*$-Tree와 Grid를 이용한 이동 객체의 위치 일반화 기법 (Location Generalization Method of Moving Object using $R^*$-Tree and Grid)

  • 고현;김광종;이연식
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권2호
    • /
    • pp.231-242
    • /
    • 2007
  • 패턴 탐사에 관한 기존의 연구들[1,2,3,4,5,6,11,12,13]은 이동 객체의 위치 이력 데이터 집합에 대한 위치 일반화 접근법을 사용하지 않거나 사용해도 특정 공간상의 이동 패턴들 중 단순히 시공간 제약이 없는 빈발 패턴만을 추출하므로, 특정 지점들 간의 최적 이동 경로나 스케줄링 경로와 같은 시공간 제약을 갖는 빈발 패턴 탐사에는 적용하기 어렵다. 또한 패턴 탐사의 수행에 있어 기존의 기법들은 데이터베이스에 대한 반복 접근을 줄이기 위해 메모리 상에 패턴 트리를 생성하여 사용하므로 보다 많은 메모리 공간을 소요하게 된다. 따라서 이러한 기존 탐사 기법들의 문제점들을 해결하기 위한 보다 효율적인 패턴 탐사 기법이 필요한 실정이다. 효율적 탐사 기법을 개발하기 위하여 본 논문에서는 방대한 이동 객체의 이력 데이터 집합에 대한 탐사 수행 시간 및 탐사에 필요한 메모리 공간을 최소화하기 위해서 상세 수준의 데이터들을 의미있는 공간영역 정보로 변환하는 새로운 위치 일반화 방법을 제안한다. 제안된 방법은 패턴 탐사의 전처리 과정에서 $R^*$-Tree와 영역 Grid 해쉬 테이블(AGHT:Area Grid Hash Table)을 기반으로 이동 객체의 위치 속성들을 2차원 공간영역으로 일반화하여 이동 시퀀스를 생성함으로써 효율적인 이동 객체의 공간 이동 패턴 마이닝을 유도할 수 있다.

  • PDF

aCN-RB-tree: Constrained Network-Based Index for Spatio-Temporal Aggregation of Moving Object Trajectory

  • Lee, Dong-Wook;Baek, Sung-Ha;Bae, Hae-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권5호
    • /
    • pp.527-547
    • /
    • 2009
  • Moving object management is widely used in traffic, logistic and data mining applications in ubiquitous environments. It is required to analyze spatio-temporal data and trajectories for moving object management. In this paper, we proposed a novel index structure for spatio-temporal aggregation of trajectory in a constrained network, named aCN-RB-tree. It manages aggregation values of trajectories using a constraint network-based index and it also supports direction of trajectory. An aCN-RB-tree consists of an aR-tree in its center and an extended B-tree. In this structure, an aR-tree is similar to a Min/Max R-tree, which stores the child nodes' max aggregation value in the parent node. Also, the proposed index structure is based on a constrained network structure such as a FNR-tree, so that it can decrease the dead space of index nodes. Each leaf node of an aR-tree has an extended B-tree which can store timestamp-based aggregation values. As it considers the direction of trajectory, the extended B-tree has a structure with direction. So this kind of aCN-RB-tree index can support efficient search for trajectory and traffic zone. The aCN-RB-tree can find a moving object trajectory in a given time interval efficiently. It can support traffic management systems and mining systems in ubiquitous environments.

검침데이터를 이용한 전력설비 시공간 부하분석모델 (Spatio-temporal Load Analysis Model for Power Facilities using Meter Reading Data)

  • 신진호;김영일;이봉재;양일권;류근호
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.1910-1915
    • /
    • 2008
  • The load analysis for the distribution system and facilities has relied on measurement equipment. Moreover, load monitoring incurs huge costs in terms of installation and maintenance. This paper presents a new model to analyze wherein facilities load under a feeder every 15 minutes using meter reading data that can be obtained from a power consumer every 15 minute or a month even without setting up any measuring equipment. After the data warehouse is constructed by interfacing the legacy system required for the load calculation, the relationship between the distribution system and the power consumer is established. Once the load pattern is forecasted by applying clustering and classification algorithm of temporal data mining techniques for the power customer who is not involved in Automatic Meter Reading(AMR), a single-line diagram per feeder is created, and power flow calculation is executed. The calculation result is analyzed using various temporal and spatial analysis methods such as Internet Geographic Information System(GIS), single-line diagram, and Online Analytical Processing (OLAP).

A New Estimation Model for Wireless Sensor Networks Based on the Spatial-Temporal Correlation Analysis

  • Ren, Xiaojun;Sug, HyonTai;Lee, HoonJae
    • Journal of information and communication convergence engineering
    • /
    • 제13권2호
    • /
    • pp.105-112
    • /
    • 2015
  • The estimation of missing sensor values is an important problem in sensor network applications, but the existing approaches have some limitations, such as the limitations of application scope and estimation accuracy. Therefore, in this paper, we propose a new estimation model based on a spatial-temporal correlation analysis (STCAM). STCAM can make full use of spatial and temporal correlations and can recognize whether the sensor parameters have a spatial correlation or a temporal correlation, and whether the missing sensor data are continuous. According to the recognition results, STCAM can choose one of the most suitable algorithms from among linear interpolation algorithm of temporal correlation analysis (TCA-LI), multiple regression algorithm of temporal correlation analysis (TCA-MR), spatial correlation analysis (SCA), spatial-temporal correlation analysis (STCA) to estimate the missing sensor data. STCAM was evaluated over Intel lab dataset and a traffic dataset, and the simulation experiment results show that STCAM has good estimation accuracy.