• 제목/요약/키워드: Temporal Feature

검색결과 315건 처리시간 0.194초

Semi-fragile Watermarking Scheme for H.264/AVC Video Content Authentication Based on Manifold Feature

  • Ling, Chen;Ur-Rehman, Obaid;Zhang, Wenjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권12호
    • /
    • pp.4568-4587
    • /
    • 2014
  • Authentication of videos and images based on the content is becoming an important problem in information security. Unfortunately, previous studies lack the consideration of Kerckhoffs's principle in order to achieve this (i.e., a cryptosystem should be secure even if everything about the system, except the key, is public knowledge). In this paper, a solution to the problem of finding a relationship between a frame's index and its content is proposed based on the creative utilization of a robust manifold feature. The proposed solution is based on a novel semi-fragile watermarking scheme for H.264/AVC video content authentication. At first, the input I-frame is partitioned for feature extraction and watermark embedding. This is followed by the temporal feature extraction using the Isometric Mapping algorithm. The frame index is included in the feature to produce the temporal watermark. In order to improve security, the spatial watermark will be encrypted together with the temporal watermark. Finally, the resultant watermark is embedded into the Discrete Cosine Transform coefficients in the diagonal positions. At the receiver side, after watermark extraction and decryption, temporal tampering is detected through a mismatch between the frame index extracted from the temporal watermark and the observed frame index. Next, the feature is regenerate through temporal feature regeneration, and compared with the extracted feature. It is judged through the comparison whether the extracted temporal watermark is similar to that of the original watermarked video. Additionally, for spatial authentication, the tampered areas are located via the comparison between extracted and regenerated spatial features. Experimental results show that the proposed method is sensitive to intentional malicious attacks and modifications, whereas it is robust to legitimate manipulations, such as certain level of lossy compression, channel noise, Gaussian filtering and brightness adjustment. Through a comparison between the extracted frame index and the current frame index, the temporal tempering is identified. With the proposed scheme, a solution to the Kerckhoffs's principle problem is specified.

Dynamic gesture recognition using a model-based temporal self-similarity and its application to taebo gesture recognition

  • Lee, Kyoung-Mi;Won, Hey-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2824-2838
    • /
    • 2013
  • There has been a lot of attention paid recently to analyze dynamic human gestures that vary over time. Most attention to dynamic gestures concerns with spatio-temporal features, as compared to analyzing each frame of gestures separately. For accurate dynamic gesture recognition, motion feature extraction algorithms need to find representative features that uniquely identify time-varying gestures. This paper proposes a new feature-extraction algorithm using temporal self-similarity based on a hierarchical human model. Because a conventional temporal self-similarity method computes a whole movement among the continuous frames, the conventional temporal self-similarity method cannot recognize different gestures with the same amount of movement. The proposed model-based temporal self-similarity method groups body parts of a hierarchical model into several sets and calculates movements for each set. While recognition results can depend on how the sets are made, the best way to find optimal sets is to separate frequently used body parts from less-used body parts. Then, we apply a multiclass support vector machine whose optimization algorithm is based on structural support vector machines. In this paper, the effectiveness of the proposed feature extraction algorithm is demonstrated in an application for taebo gesture recognition. We show that the model-based temporal self-similarity method can overcome the shortcomings of the conventional temporal self-similarity method and the recognition results of the model-based method are superior to that of the conventional method.

동영상 검색을 위한 템포럴 텍스처 모델링 (Temporal Texture modeling for Video Retrieval)

  • 김도년;조동섭
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권3호
    • /
    • pp.149-157
    • /
    • 2001
  • In the video retrieval system, visual clues of still images and motion information of video are employed as feature vectors. We generate the temporal textures to express the motion information whose properties are simple expression, easy to compute. We make those temporal textures of wavelet coefficients to express motion information, M components. Then, temporal texture feature vectors are extracted using spatial texture feature vectors, i.e. spatial gray-level dependence. Also, motion amount and motion centroid are computed from temporal textures. Motion trajectories provide the most important information for expressing the motion property. In our modeling system, we can extract the main motion trajectory from the temporal textures.

  • PDF

연속하는 공간적 특징의 시간적 유사성 검출을 이용한 고속 동영상 검색 (Fast Video Detection Using Temporal Similarity Extraction of Successive Spatial Features)

  • 조아영;양원근;조주희;임예은;정동석
    • 한국통신학회논문지
    • /
    • 제35권11C호
    • /
    • pp.929-939
    • /
    • 2010
  • 멀티미디어 기술이 발전함에 따라 대용량의 데이터베이스의 관리와 불법 복제물 검출을 위한 동영상 검색의 필요성이 커지고 있다. 본 논문에서는 이러한 요구에 맞춰 대용량 데이터베이스에서 고속 동영상 검색을 수행할 수 있는 방법을 제안한다. 고속 동영상 검색 방법은 프레임의 휘도 분포를 이용하여 공간적 특징을 추출하고, 동영상의 시간적 유사성 지도를 생성하여 시간적 특정을 추출한다. 동영상의 공간적 특정과 시간적 특정을 식별자로 구성하고 단계적인 정합 방법을 수행한다. 실험에서는 원본 동영상과 밝기 변화, 압축률 변환, 자막/로고 삽입과 같은 다양한 변형을 이용하여 정확성, 추출 및 정합 속도, 식별자 크기를 측정하여 성능을 평가하였다. 또한, 제안한 방법의 파라미터를 실험적으로 선택한 과정을 기술하고 비교 알고리즘과 공간적 특정만을 이용한 단순 정합 결과를 제시하였다. 정확성, 경색 속도 식별자 크기의 모든 결과에서, 제안한 고속 검색 방법이 대용량 데이터베이스의 동영상 경색에 가장 적합한 기술임을 보였다.

Effects of Temporal Distance on Brand Extension Evaluation: Applying the Construal-Level Perspective to Brand Extensions

  • Park, Kiwan
    • Asia Marketing Journal
    • /
    • 제17권1호
    • /
    • pp.97-121
    • /
    • 2015
  • In this research, we examine whether and why temporal distance influences evaluations of two different types of brand extensions: concept-based extensions, defined as extensions primarily based on the importance or relevance of brand concepts to extension products; and similarity-based extensions, defined as extensions primarily based on the amount of feature similarity at the product-category level. In Study 1, we test the hypothesis that concept-based extensions are evaluated more favorably when they are framed to launch in the distant rather than in the near future, whereas similaritybased extensions are evaluated more favorably when they are framed to launch in the near rather than in the distant future. In Study 2, we confirm that this time-dependent differential evaluation is driven by the difference in construal level between the bases of the two types of extensions - i.e., brand-concept consistency and product-category feature similarity. As such, we find that conceptbased extensions are evaluated more favorably under the abstract than concrete mindset, whereas similarity-based extensions are evaluated more favorably under the concrete than abstract mindset. In Study 3, we extend to the case for a broad brand (i.e., brands that market products across multiple categories), finding that making accessible a specific product category of a broad parent brand influences evaluations of near-future, but not distant-future, brand extensions. Combined together, our findings suggest that temporal distance influences brand extension evaluation through its effect on the importance placed on brand concepts and feature similarity. That is, consumers rely on different bases to evaluate brand extensions, depending on their perception of when the extensions take place and on under what mindset they are placed. This research makes theoretical contributions to the brand extension research by identifying one important determinant to brand extension evaluation and also uncovering its underlying dynamics. It also contributes to expanding the scope of the construal level theory by putting forth a novel interpretation of two bases of perceived fit in terms of construal level. Marketers who are about to launch and advertise brand extensions may benefit by considering temporal-distance information in determining what content to deliver about extensions in their communication efforts. Conceptual relation of a parent brand to extensions needs to be emphasized in the distant future, whereas feature similarity should be highlighted in the near future.

Two-stage Deep Learning Model with LSTM-based Autoencoder and CNN for Crop Classification Using Multi-temporal Remote Sensing Images

  • Kwak, Geun-Ho;Park, No-Wook
    • 대한원격탐사학회지
    • /
    • 제37권4호
    • /
    • pp.719-731
    • /
    • 2021
  • This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.

시공간 영상 분석에 의한 강건한 교통 모니터링 시스템 (Robust Traffic Monitoring System by Spatio-Temporal Image Analysis)

  • 이대호;박영태
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권11호
    • /
    • pp.1534-1542
    • /
    • 2004
  • 본 논문에서는 교통 영상에서 실시간 교통 정보를 산출하는 새로운 기법을 소개한다. 각 차선의 검지 영역은 통계적 특징과 형상적 특징을 이용하여 도로, 차량, 그리고 그림자 영역으로 분류한다. 한 프레임에서의 오류는 연속된 프레임에서의 차량 영역의 상관적 특징을 이용하여 시공간 영상에서 교정된다. 국부 검지 영역만을 처리하므로 전용의 병렬 처리기 없이도 초당 30 프레임 이상의 실시간 처리가 가능하며 기상조건, 그림자, 교통량의 변화에도 강건한 성능을 보장할 수 있다.

훈련데이터 기반의 temporal filter를 적용한 한국어 4연숫자 전화음성의 인식실험 (Recognition experiment of Korean connected digit telephone speech using the temporal filter based on training speech data)

  • 정성윤;김민성;손종목;배건성;강점자
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2003년도 10월 학술대회지
    • /
    • pp.149-152
    • /
    • 2003
  • In this paper, data-driven temporal filter methods[1] are investigated for robust feature extraction. A principal component analysis technique is applied to the time trajectories of feature sequences of training speech data to get appropriate temporal filters. We did recognition experiments on the Korean connected digit telephone speech database released by SITEC, with data-driven temporal filters. Experimental results are discussed with our findings.

  • PDF

다중 시기 SAR 자료를 이용한 토지 피복 구분을 위한 특징 추출과 융합 (Feature Extraction and Fusion for land-Cover Discrimination with Multi-Temporal SAR Data)

  • 박노욱;이훈열;지광훈
    • 대한원격탐사학회지
    • /
    • 제21권2호
    • /
    • pp.145-162
    • /
    • 2005
  • SAR 자료의 분류에서 토지 피복 구분 분류 정확도의 향상을 위해 이 논문은 다중 시기 SAR 자료를 이용한 분류에서의 특징 추출과 정보 융합 방법론을 제시하였다. 다중 시기 SAR 센서의 산란 특성을 고려하여 평균 후방 산란계수, 시간적 변이도와 긴밀도를 특징으로서 추출하였다. 이렇게 추출된 특징의 효율적인 응합을 위해 Dempster-Shafer theory of evidence(D-S 이론)와 퍼지 논리를 적용하였다. 특히 D-S 이론의 적용시 특징 기반 mass function 할당을 제안하였고, 퍼지 논리의 적용시 다양한 퍼지 결합 연산자의 결과를 비교하였다. 다중 시기 Radarsat-1 자료에의 적용 결과, 추출된 특징들은 서로 상호 보완적인 정보를 제공할 수 있으며 수계, 논과 도심지를 효율적으로 구분할 수 있었다. 그러나 산림과 밭은 구분이 애매한 경우가 나타났다. 정보 융합 방법론 측면에서, D-S 이론과 퍼지 Max와 Algebraic Sum 연산자를 제외한 다른 퍼지 연산자는 서로 유사한 분류 정확도를 나타내었다.

경계 영역 특성과 적응적 블록 정합을 이용한 시간적 오류 은닉 (Temporal Error Concealment Using Boundary Region Feature and Adaptive Block Matching)

  • 배태욱;김승진;김태수;이건일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.12-14
    • /
    • 2005
  • In this paper, we proposed an temporal error concealment (EC) using the proposed boundary matching method and the adaptive block matching method. The proposed boundary matching method improves the spatial correlation of the macroblocks (MBs) by reusing the pixels of the concealed MB to estimate a motion vector of a error MB. The adaptive block matching method inspects the horizontal edge and the vertical edge feature of a error MB surroundings, and it conceals the error MBs in reference to more stronger edge feature. This improves video quality by raising edge connection feature of the error MBs and the neighborhood MBs. In particular, we restore a lost MB as the unit of 8${\times}$16 block or 16${\times}$8 block by using edge feature from the surrounding macroblocks. Experimental results show that the proposed algorithm gives better results than the conventional algorithms from a subjective and an objective viewpoint.

  • PDF