• Title/Summary/Keyword: Temporal Difference

Search Result 809, Processing Time 0.032 seconds

Change of NDVI by Surface Reflectance Based on KOMPSAT-3/3A Images at a Zone Around the Fukushima Daiichi Nuclear Power Plant (후쿠시마 제1 원전 주변 지역의 KOMPSAT-3/3A 영상 기반 지표반사도 적용 식생지수 변화)

  • Lee, Jihyun;Lee, Juseon;Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.2027-2034
    • /
    • 2021
  • Using multi-temporal KOMPSAT-3/3A high-resolution satellite images, the Normalized Difference Vegetation Index (NDVI) for the area around the Fukushima daiichi nuclear power plant was determined, and the pattern of vegetation changes was analyzed. To calculate the NDVI, surface reflectance from the KOMPSAT-3/3A satellite image was used. Satellite images from four years were used, and the zones where the images overlap was designated as the area of interest (AOI) for the study, and by setting a profile passing through highly vegetated area as a data analysis method, the changes by year were examined. In addition, random points were extracted within the AOI and displayed as a box plot to quantitatively indicate change of NDVI distribution pattern. The main results of this study showed that the NDVI in 2014 was low within AOI in the vicinity of the nuclear power plant, but vegetated area continued to expand until 2021. These results were also confirmed in the change monitoring results shown in a profile or box plot. In disaster areas where access is restricted, such as the Fukushima nuclear power plant area, where it is difficult to collect field data, obtaining land cover classification products with high accuracy using satellite images is challenging, so it is appropriate to analyze them using primary outputs such as vegetation indices obtained from high-resolution satellite imagery. It is necessary to establish an international cooperation system for jointly utilizing satellite images. Meanwhile, to periodically monitor environmental changes in neighboring countries that may affect the Korean peninsula, it is necessary to establish utilization models and systems using high-resolution satellite images.

Seasonal Assessment of Groundwater-Dependent Ecosystem Using Monitoring of Benthic Macroinvertebrates in Wetland (계절에 따른 습지 내 저서성대형무척추동물 모니터링을 통한 지하수의존생태계 특성 평가)

  • Jeong, Chanyoung;Choi, Ji-Woong;Moon, Hee Sun;Kim, Dong-Hun;Moon, Sang-Ho;O, Yong-Hwa;Han, Ji Yeon;Oh, Seolran;Kim, Yongcheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.130-143
    • /
    • 2021
  • Wetlands are one of the most representative groundwater dependent ecosystems(GDEs) that require access to groundwater on a permanent or intermittent basis to maintain their biological communities and ecological processes. In this study, the seasonal characteristics of the GDEs in Baekseok Reservoir Wetland were evaluated through the monitoring of the temporal and spatial community of benthic macroinvertebrates in the wetland. The appearance of benthic macroinvertebrates appearance was changed seasonally depending on environmental factors such temperature, precipitation and water level for their habitat and it also showed the clear spatial difference in the wetland. The scores of Diversity index(H'), Richness Index (R1) and the Ecological score of benthic macroinvertebrates (TESB/AESB) were relatively high at St.3 and 4(i.e., north area) where groundwater inflows into wetland(i.e., high 222Rn conc.). The statistical analysis (ANOVA test and PCA) investigated the correlation among the benthic macroinvertebrates' community, groundwater level, wetland water level and water quality. The results showed that the community of benthic macroinvertebrates at St. 3 and 4 in Baekseok Reservoir Wetlands was spatially dependent on groundwater level and groundwater inflow. The characterization and assessment of GDEs requires understanding the hydrological, biogeochemical and biological process and this study will provide information for characterization and assessment of GDEs.

A Prediction Method on the Accelerometer Data of the Formation Flying Low Earth Orbit Satellites Using Neural Network (신경망 모델을 사용한 편대비행 저궤도위성 가속도계 데이터 예측 기법)

  • Kim, Mingyu;Kim, Jeongrae
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.927-938
    • /
    • 2021
  • A similar magnitude of non-gravitational perturbations are act on the formation flying low earth orbit satellites with a certain time difference. Using this temporal correlation, the non-gravity acceleration of the low earth orbiting satellites can be transferred for the othersatellites. There is a period in which the accelerometer data of one satellite is unavailable for GRACE and GRACE-FO satellites. In this case, the accelerometer data transplant method described above is officially used to recover the accelerometer data at the Jet Propulsion Laboratory (JPL). In this paper, we proposed a model for predicting accelerometer data of formation flying low earth orbit satellites using a neural network (NN) model to improve the estimation accuracy of the transplant method. Although the transplant method cannot reflect the satellite's position and space environmental factors, the NN model can use them as model inputs to increase the prediction accuracy. A prediction test of an accelerometer data using NN model was performed for one month, and the prediction accuracy was compared with the transplant method. The NN model outperformsthe transplant method with 55.0% and 40.1% error reduction in the along-track and radial directions, respectively.

Comparative Analysis of Annual Tropospheric Delay by Season and Weather (계절과 날씨에 따른 연간 대류권 지연오차량 변화)

  • Lim, Soo-Hyeon;Kim, Ji-Won;Park, Jeong-Eun;Bae, Tae-Suk;Hong, Sungwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In this study, we estimated the tropospheric delay of GNSS (Global Navigation Satellite System) signals during passing through the atmosphere in relation to weather and seasonal factors. For this purpose, we chose four CORS (Continuously Operating Reference Station) stations from inland (CCHJ and PYCH) and on the coast (GEOM and CHJU). A total of 48 days for each station (one set of data for each week) were downloaded from the NGII (National Geographic Information Institute) and processed it using the scientific GNSS software. The average tropospheric delays in winter are less than 2,400 mm, which is about 200 mm less than those in summer. The estimated tropospheric delay shows a similar pattern from all stations except the absolute bias in magnitude, while a large delay was observed for the station located on the coast. In addition, the delay during the day was relatively stable in winter, and the average tropospheric delay was strongly related to the orthometric height. The inland stations have tropospheric delays by the precipitation rather than humidity due to dry weather and difference in temperature. On the contrary, it was primarily caused by the humidity on the sea. The correlation between temperature and water vapor pressure is 0.9 or larger for all stations, and the tropospheric delay showed a high linear relationship with temperature. It is necessary to analyze the GNSS data with higher temporal resolution (e.g. all RINEX data of the year) to improve the stability and reliability of the correlation results.

Urban Heat Island Intensity Analysis by Landuse Types (토지이용 유형별 도시열섬강도 분석)

  • Je, Min-Hee;Jung, Seung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.1-12
    • /
    • 2018
  • Heat waves during summer cause a qualitative degradation in urban environments and increases the number of patients who suffer from heat-related illnesses, and the urbanization deepens these problems. It is a prerequisite to analyze the current status accurately in order to assess the urban heat island phenomenon. Thus, this study aims to collect weather measurements information at the occurrence of a severe heat wave in Seoul, thereby allowing analysis of information, which will also consider the land use type. The weather measurement information used in the analysis had an advantage, as the gap between measured locations is considerably shorter than before due to the miniaturization of the automatic weather systems (AWS), which are connected through the communication network. Based on the above collected information, a temporal change in the data due to land use type was analyzed. As a result, the difference in temperature change in response to the land use type could be compared, as could the occurrence pattern of the tropical night phenomenon, and the effect on temperature reduction in green belt areas could be identified through the comparison of the intensity of heat island by time and land use. The methods and results derived in this study through the comparative analysis in terms of time and land use, weather information measurements, and mapping can be utilized as foundational data that can be referred to in urban planning to reduce the heat island phenomenon in the future.

Atmospheric Correction Effectiveness Analysis of Reflectance and NDVI Using Multispectral Satellite Image (다중분광위성자료의 대기보정에 따른 반사도 및 식생지수 분석)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.981-996
    • /
    • 2018
  • In agriculture, remote sensing data using earth observation satellites have many advantages over other methods in terms of time, space, and efficiency. This study analyzed the changes of reflectance and vegetation index according to atmospheric correction of images before using satellite images in agriculture. Top OF Atmosphere (TOA) reflectance and surface reflectance through atmospheric correction were calculated to compare the reflectance of each band and Normalized Vegetation difference Index (NDVI). As a result, the NDVI observed from field measurement sensors and satellites showed a higher agreement and correlation than the TOA reflectance calculated from surface reflectance using atmospheric correction. Comparing NDVI before and after atmospheric correction for multi-temporal images, NDVI increased after atmospheric corrected in all images. garlic and onion cultivation area and forest where the vegetation health was high area NDVI increased more 0.1. Because the NIR images are included in the water vapor band, atmospheric correction is greatly affected. Therefore, atmospheric correction is a very important process for NDVI time-series analysis in applying image to agricultural field.

Distribution Patterns of Macrobenthos during Recent Summer Seasons at the Bongam Sand Tidal Flat of Masan Bay, Korea (마산만 봉암갯벌에 서식하는 대형저서동물의 하계 분포양상)

  • Seo, Jin-Young;Kim, Jeong-Hyun;Choi, Jin-Woo
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.626-637
    • /
    • 2018
  • In this study, a series of survey were conducted to identify the distribution patterns of macrobenthos at the Bongam sand tidal flat in Masan Bay. We collected macrobenthos at 9 sampling sites twice in June and September of every year from 2012 to 2017 using a box core sampler (collecting area, $0.025m^2$). There was a total of 50 species with a community density of $6,388ind.m^{-2}$ and a biomass of $313.9g\;wet\;m^{-2}$ during the study period. Polychaetes had the highest number of species and density among the macrofauna, but the mollusks had the largest biomass. The number of species ranged from 10 to 25 during study period but increased to over 20 species in 2014. The density which ranged from $1,508ind.m^{-2}$ to $12,008ind.m^{-2}$ rapidly increased in 2015. The dominant species were all polychaetes such as Heteromastus filiformis, Prionospio japonicus, Hediste diadroma, and Neanthes succinea. The mean diversity index ranged from 1.2 to 1.9, richness index from 1.2 to 2.4, and evenness index from 0.5 to 0.9. From the cluster analysis results, there was a spatial difference in the similarity of faunal composition of macrobenthos and this pattern was maintained throughout the study period, that is, the temporal similarities were higher than the spatial similarities. There was a change in community composition from June 2014 to June 2015 in most of the sampling sites. During this time, the dominant species also changed from H. filiformis and N. succinea to H. filiformis and H. diadroma. The density of opportunistic species such as Capitella capitata and Polydora ligni decreased compared to the early 2000s while the population of H. diadroma increased from 2015. There was little ecological information on H. diadroma such as when and where this species occurred.

Comparison of CH4 Emission by Open-path and Closed Chamber Methods in the Paddy Rice Fields (벼논에서 open-path와 closed chamber 방법 간 메탄 배출량 비교)

  • Jeong, Hyun-cheol;Choi, Eun-jung;Kim, Gun-yeob;Lee, Sun-il;Lee, Jong-sik
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.507-516
    • /
    • 2018
  • The closed chamber method, which is one of the most commonly used method for measuring greenhouse gases produced in rice paddy fields, has limitations in measuring dynamic $CH_4$ flux with spatio-temporal constrains. In order to deal with the limitation of the closed chamber method, some studies based on open-path of eddy covariance method have been actively conducted recently. The aim of this study was to compare the $CH_4$ fluxes measured by open-path and closed chamber method in the paddy rice fields. The open-path, one of the gas ($CO_2$, $CH_4$ etc.) analysis methods, is technology where a laser beam is emitted from the source passes through the open cell, reflecting multiple times from the two mirrors, and then detecting. The $CH_4$ emission patterns by these two methods during rice cultivation season were similar, but the total $CH_4$ emission measured by open-path method were 31% less than of the amount measured by closed chamber. The reason for the difference in $CH_4$ emission was due to overestimation by closed chamber and underestimation by open-path. The closed chamber method can overestimate $CH_4$ emissions due to environmental changes caused by high temperature and light interruption by acrylic partition in chamber. On the other hand, the open-path method for eddy covariance can underestimate its emission because it assumes density fluctuations and horizontal homogeneous terrain negligible However, comparing $CH_4$ fluxes at the same sampling time (AM 10:30-11:00, 30-min fluxes) showed good agreements ($r^2=0.9064$). The open-path measurement technique is expected to be a good way to compensate for the disadvantage of the closed chamber method because it can monitor dynamic $CH_4$ fluctuation even if data loss is taken into account.

Typhoon Induced Changes of the Phytoplankton at Bok-gyo Bridge Area in Juam Lake (태풍에 의한 주암호복교지점의 식물플랑크톤 변화)

  • Cho, Ki An;Lee, Hak Young
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.253-258
    • /
    • 2018
  • Phytoplankton community was studied in relation to a typhoon at Bok-gyo Bridge area in Juam Lake, Korea. In August 31, 2000, a typhoon (Prapiroon) was passed by Juam Lake with great power enough to destroy summer stratification of Juam Lake. Destratification resulted in temporal mixing of the whole water column and changed the physical and chemical properties of water bodies, and caused the changes of the biological properties. The transparency decreased from 195 cm before the typhoon to 84 cm after the typhoon with the resuspension of the bottom sediment. In the vertical distribution of the phytoplankton population, the maximum population was measured at depth of 2 m before the typhoon. However, immediately after the typhoon, the population distributed evenly throughout the entire water layers. The carbon biomass of the phytoplankton was also highest at the depth of 2 m before the typhoon, but immediately after the typhoon, it was uniformly distributed throughout the whole water layers. The vertical profiles of the concentrations of chlorophyll a, however, did not show a significant difference before and after the typhoon. The typhoon induced destratification and restratification altered the taxa of the phytoplankton. The major dominant phytoplankton taxa before the typhoon was diatoms including Aulacoseira granulata, but the green algae overwhelmed the diatoms in cell number and biomass after the typhoon. The chlorophycean dominance was replaced by cyanophycean dominance with the heavy rain and descent of water temperture at the end of September.

Analysis of the Individual Tree Growth for Urban Forest using Multi-temporal airborne LiDAR dataset (다중시기 항공 LiDAR를 활용한 도시림 개체목 수고생장분석)

  • Kim, Seoung-Yeal;Kim, Whee-Moon;Song, Won-Kyong;Choi, Young-Eun;Choi, Jae-Yong;Moon, Guen-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.1-12
    • /
    • 2019
  • It is important to measure the height of trees as an essential element for assessing the forest health in urban areas. Therefore, an automated method that can measure the height of individual tree as a three-dimensional forest information is needed in an extensive and dense forest. Since airborne LiDAR dataset is easy to analyze the tree height(z-coordinate) of forests, studies on individual tree height measurement could be performed as an assessment forest health. Especially in urban forests, that adversely affected by habitat fragmentation and isolation. So this study was analyzed to measure the height of individual trees for assessing the urban forests health, Furthermore to identify environmental factors that affect forest growth. The survey was conducted in the Mt. Bongseo located in Seobuk-gu. Cheonan-si(Middle Chungcheong Province). We segment the individual trees on coniferous by automatic method using the airborne LiDAR dataset of the two periods (year of 2016 and 2017) and to find out individual tree growth. Segmentation of individual trees was performed by using the watershed algorithm and the local maximum, and the tree growth was determined by the difference of the tree height according to the two periods. After we clarify the relationship between the environmental factors affecting the tree growth. The tree growth of Mt. Bongseo was about 20cm for a year, and it was analyzed to be lower than 23.9cm/year of the growth of the dominant species, Pinus rigida. This may have an adverse effect on the growth of isolated urban forests. It also determined different trees growth according to age, diameter and density class in the stock map, effective soil depth and drainage grade in the soil map. There was a statistically significant positive correlation between the distance to the road and the solar radiation as an environmental factor affecting the tree growth. Since there is less correlation, it is necessary to determine other influencing factors affecting tree growth in urban forests besides anthropogenic influences. This study is the first data for the analysis of segmentation and the growth of the individual tree, and it can be used as a scientific data of the urban forest health assessment and management.