• Title/Summary/Keyword: Temporal Difference

Search Result 809, Processing Time 0.034 seconds

Discontinuous Grids and Time-Step Finite-Difference Method for Simulation of Seismic Wave Propagation (지진파 전파 모의를 위한 불균등 격자 및 시간간격 유한차분법)

  • 강태섭;박창업
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.50-58
    • /
    • 2003
  • We have developed a locally variable time-step scheme matching with discontinuous grids in the flute-difference method for the efficient simulation of seismic wave propagation. The first-order velocity-stress formulations are used to obtain the spatial derivatives using finite-difference operators on a staggered grid. A three-times coarser grid in the high-velocity region compared with the grid in the low-velocity region is used to avoid spatial oversampling. Temporal steps corresponding to the spatial sampling ratio between both regions are determined based on proper stability criteria. The wavefield in the margin of the region with smaller time-step are linearly interpolated in time using the values calculated in the region with larger one. The accuracy of the proposed scheme is tested through comparisons with analytic solutions and conventional finite-difference scheme with constant grid spacing and time step. The use of the locally variable time-step scheme with discontinuous grids results in remarkable saving of the computation time and memory requirement with dependency of the efficiency on the simulation model. This implies that ground motion for a realistic velocity structures including near-surface sediments can be modeled to high frequency (several Hz) without requiring severe computer memory

  • PDF

Analysis of Regional Effects of the Seasonal Management Policy on Coal-fired Power Plant Using Difference-in-difference Method (이중차분법을 이용한 석탄화력발전소에 대한 미세먼지 계절관리제의 지역별 효과 분석)

  • Kang, Heecha
    • Environmental and Resource Economics Review
    • /
    • v.31 no.3
    • /
    • pp.343-365
    • /
    • 2022
  • This paper tries to identify the effect of reducing PM2.5 concentration of the First Seasonal Management Policy implemented by Korean government by using statistical method. In particular, this paper tests the hypothesis that this policy effect may differ by region (west-coast, south-coast, and east-coast). To this end, this paper analyzed only pure policy effects by removing temporal abnormalities such as COVID-19, warm winter temperature during the policy implementation period (December 2019 to March 2020) by using the difference-in-difference method (DID). As a result of the analysis, this policy had the effect of reducing PM2.5, but the effect is not homogenous by region. In particular, PM2.5 reducing effect is the largest in west-coast region and south-coast region folllows, but its effect is not statistically significant in the east-cost region. In conclusion, this paper drew implications that the current Seasonal mamangement policy which is implemented regardless of the regional difference needs to be changed.

Large Eddy Simulation of Boundary Layer Transition on the Turbine Blade (LES를 이용한 축류 터빈 경계층 천이에 대한 수치해석)

  • Jin, Byung-Ju;Park, No-Ma;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.392-397
    • /
    • 2001
  • A numerical study is performed to investigate the interaction between subsonic axial turbine blade boundary layer and periodically oncoming rotor induced wakes. An implicit scheme for solving the compressible Navier-Stokes equation is developed, which adopts a 4th-order compact difference for spatial discretiztion, a 2nd order Crank-Nicolson scheme for temporal discretization and the dynamic eddy viscosity model as the subgrid scale model. The efficiency and the accuracy of the proposed method are verified by applying to some benchmark problems such as laminar cylinder flow, laminar airfoil cascade flow and a transitional flat plate boundary layer flow. Computational results show good agreements with previous experimental and numerical results. Finally, flow through a stator cascade is simulated at $Re = 7.5{\times}10^5$ without free-stream turbulence intensity. The velocity fields and skin friction coefficients in the transitional region show similar trends with previous boundary layer natural transition.

  • PDF

An Efficient Spatial and Temporal Interpolation for Adaptive De-interlacing (De-interlacing을 위한 효과적인 시/공간 보간 알고리즘)

  • 이성규;이동호
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.889-892
    • /
    • 2000
  • 본 논문에서는 효과적인 De-interlacing을 위한 Edge based Median Filter와 3-Step AMPD(Adaptive Minimum Pixel Difference Filter)를 제안한다. Motion Adaptive De-interlacing 방법에서 중요한 요소인 Motion Hissing에 의한 에러를 방지하기 위해 입력 영상을 4 가지 유형으로 구분하여 각 영상에 따라 다른 임계 값을 적용하여 정확한 화소 값을 보간 하는AMPD(Adaptive Minimum Pixel Difference) Filter를 사용하며 Moving Diagonal Edge의 효과적인 보간을 위해서 방향 필터를 사용하여 Edge Map을 추출한 뒤 Edge에 따라 가변적인 후보 화소를 선택하는 Edge based Median Filter를 사용하여 성능을 향상시켰다. 또한 입력되는 영상을 움직임 영역, 정지 영역, 경계 영역으로 나누어 적응적으로 보간 하여 연산 효율을 높였다. 제안된 방법은 다양한 영상에 대한 모의실험을 통해 기존의 방법에 비해 뛰어난 성능 개선을 보였다.

  • PDF

Loop Current Calculation based on Voltage Angle Difference at Tie Switch for Switching Plan Validation in Distribution System Operation (상시개방점 양단전압 측정값을 이용한 배전선로 루프운전 가능 여부 판단 방법)

  • Son, Juhwan;Lim, Seongil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.14-21
    • /
    • 2015
  • Distribution systems are operated in radial structure, but temporal loop structure could be founded the live load transfer. Main purposes of reconfiguration of distribution network are load balancing, loss minimization and voltage drop maintaining. In the loop structure, huge loop current can be flowed between two substations in case of large voltage angle difference. Protection devices of distribution line can be triped by this huge loop current. So, precise calculation of loop current is very important for secure switching. This paper proposes a novel calculation method of loop current using the voltage angle differences measured at the tie switches. Feasibility of the propose method has been verified by various case studies based on Matlab simulation.

Decay and diffusion characteristic of electron and ion surface charges on MgO

  • Syn, Ho-Jung;Jeong, Dong-Cheol;Lee, Tae-Ho;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.377-380
    • /
    • 2008
  • In this work, we measured the spatiotemporal surface charge distribution by the longitudinal electro-optic amplitude modulation method with BSO single crystal to investigate the decay and diffusion characteristics of surface charges in three types of MgO. The speed of decay and diffusion of two different kinds doped MgO is compared with those of pure MgO. The difference in the characteristics of the decay and diffusion between the electron and ion surface charges is investigated separately. We found that the rate of ion decay is the major factor that makes the difference of the temporal variation of wall voltage among different types doped MgO.

  • PDF

Electrical Impedance Tomography and Biomedical Applications

  • Woo, Eung-Je
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.1-6
    • /
    • 2007
  • Two impedance imaging systems of multi-frequency electrical impedance tomography (MFEIT) and magnetic resonance electrical impedance tomography (MREIT) are described. MFEIT utilizes boundary measurements of current-voltage data at multiple frequencies to reconstruct cross-sectional images of a complex conductivity distribution (${\sigma}+i{\omega}{\varepsilon}$) inside the human body. The inverse problem in MFEIT is ill-posed due to the nonlinearity and low sensitivity between the boundary measurement and the complex conductivity. In MFEIT, we therefore focus on time- and frequency-difference imaging with a low spatial resolution and high temporal resolution. Multi-frequency time- and frequency-difference images in the frequency range of 10 Hz to 500 kHz are presented. In MREIT, we use an MRI scanner to measure an internal distribution of induced magnetic flux density subject to an injection current. This internal information enables us to reconstruct cross-sectional images of an internal conductivity distribution with a high spatial resolution. Conductivity image of a postmortem canine brain is presented and it shows a clear contrast between gray and white matters. Clinical applications for imaging the brain, breast, thorax, abdomen, and others are briefly discussed.

  • PDF

A study of Temperal Difference Learning using Nonlinear Function Approximation (비선형 함수 근사화를 사용한 TD학습에 관한 연구)

  • Kwon, Jae-Cheol;Lee, Young-Seog;Kim, Dong-Ok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.407-409
    • /
    • 1998
  • This paper deals with temporal-difference learning that is a method for approximating long-term future cost as a function of current state in knowlege-poor environment, a function approximator is used to approximate the mapping from state to future cost, a linear function approximator is limited because mapping from state to future cost has a nonlinear characteristic, so a nonlinear function approximator is used to approximate the mapping from state to future cost in this paper, and that TD learning using a nonlinear function approximator is stable is proved.

  • PDF

A Study on High Reynolds Number Flow in Two-Dimensional Closed Cavity (2차원 밀폐 캐비티의 고레이놀즈수 흐름에 관한 연구)

  • 최민선;송치성;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.101-109
    • /
    • 1996
  • Two-dimensional lid-driven closed flows within square cavity were studied numerically for four Reynolds numbers : $10^4$, 3$\times10^4$, 5$\times10^4$ and 7.5$\times10^4$. A convective difference scheme to maintain the same spatial accurary by irregular grid correction is adopted by applying the interior division principle. Grid number is $80\times80$and its minimum size is about 1/400 of the cavity height. At Re=$10^4$, periodic migration of small eddies appearing in corner separation region and its temporal sinusoidal fluctuation are represented. At three higher Reynolds numbers(3$\times10^4$, 5$\times10^4$ and 7.5$\times10^4$), an organizing structure of four consecutive vorticles at two lower corners is revealed from time-mean flow patterns. But, instantaneous flow characteristics show very random unsteady fluctuation mainly due to the interaction between rotating shed vortices and stationary eddies within the corners.

  • PDF

Imaging of seismic sources by time-reversed wave propagation with staggered-grid finite-difference method (지진원 영상화를 위한 엇갈린 격자 유한 차분법을 이용한 지진파 역행 전파 모의)

  • Sheen, Dong-Hoon;Hwang, Eui-Hong;Ryoo, Yong-Gyu;Youn, Yong-Hoon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.25-32
    • /
    • 2006
  • We present a imaging method of seismic sources by time reversal propagation of seismic waves. Time-reversal wave propagation is actively used in medical imaging, non destructive testing and waveform tomography. Time-reversal wave propagation is based on the time-reversal invariance and the spatial reciprocity of the wave equation. A signal is recorded by an array of receivers, time-reversed and then back-propagated into the medium. The time-reversed signal propagates back into the same medium and the energy refocuses back at the source location. The increasing power of computers and numerical methods makes it possible to simulate more accurately the propagation of seismic waves in heterogenous media. In this work, a staggered-grid finite-difference solution of the elastic wave equation is employed for the wave propagation simulation. With numerical experiments, we show that the time-reversal imaging will enable us to explore the spatio-temporal history of complex earthquake.

  • PDF