• Title/Summary/Keyword: Temporal 데이터

Search Result 762, Processing Time 0.026 seconds

Pattern Analysis for Urban Spatial Distribution of Traffic Accidents in Jinju (진주시 교통사고의 도시공간분포패턴 분석)

  • Sung, Byeong Jun;Yoo, Hwan Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.99-105
    • /
    • 2014
  • Since traffic accidents account for the highest proportion of the artificial disasters which occur in urban areas along with fire, more scientific an analysis on the causes of traffic accidents and various prevention measures against traffic accidents are needed. In this study, the research selected Jinju-si, which belongs to local small and medium-sized cities as a research target to analyze the characteristics of temporal and spacial distribution of traffic accidents by associating the data of traffic accidents, occurred in 2013 with the causes of traffic accidents and location information that includes occurrence time and seasonal features. It subsequently examines the spatial correlation between traffic accidents and the characteristics of urban space development according to the plans of land using. As a result, the characteristics of accident distribution according to the types of accidents reveal that side right-angle collisions (car versus car) and pedestrian-crossing accident (car versus man) showed the highest clustering in the density analysis and average nearest neighbor analysis. In particular, traffic accidents occurred the most on roads which connect urban central commercial areas, high-density residential areas, and industrial areas. In addition, human damage in damage conditions, clear day in weather condition, dry condition in the road condition, and three-way intersection in the road way showed the highest clustering.

Comparative Analysis on Cloud and On-Premises Environments for High-Resolution Agricultural Climate Data Processing (고해상도 농업 기후 자료 처리를 위한 클라우드와 온프레미스 비교 분석)

  • Park, Joo Hyeon;Ahn, Mun Il;Kang, Wee Soo;Shim, Kyo-Moon;Park, Eun Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.347-357
    • /
    • 2019
  • The usefulness of processing and analysis systems of GIS-based agricultural climate data is affected by the reliability and availability of computing infrastructures such as cloud, on-premises, and hybrid. Cloud technology has grown in popularity. However, various reference cases accumulated over the years of operational experiences point out important features that make on-premises technology compatible with cloud technology. Both cloud and on-premises technologies have their advantages and disadvantages in terms of operational time and cost, reliability, and security depending on cases of applications. In this study, we have described characteristics of four general computing platforms including cloud, on-premises with hardware-level virtualization, on-premises with operating system-level virtualization and hybrid environments, and compared them in terms of advantages and disadvantages when a huge amount of GIS-based agricultural climate data were stored and processed to provide public services of agro-meteorological and climate information at high spatial and temporal resolutions. It was found that migrating high-resolution agricultural climate data to public cloud would not be reasonable due to high cost for storing a large amount data that may be of no use in the future. Therefore, we recommended hybrid systems that the on-premises and the cloud environments are combined for data storage and backup systems that incur a major cost, and data analysis, processing and presentation that need operational flexibility, respectively.

Analysis of Temporal and Spatial Distribution of Traffic Accidents in Jinju (진주시 교통사고의 시계열적 공간분포특성 분석)

  • Sung, Byeong Jun;Bae, Gyu Han;Yoo, Hwan Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.3-9
    • /
    • 2015
  • Since changes in land use in urban space cause traffic volume and it is closely related to traffic accidents. Therefore, an analysis on the causes of traffic accidents is judged to be an essential factor to establish the measure to reduce traffic accidents. In this regard, the analysis was conducted on the clustering by using the nearest neighbor indexes with regard to the occurrence frequencies of commercial and residential zone based on traffic accident data of the past five years (2009-2013) with the target of local small-medium sized city, Jinju-si. The analysis results, obtained in this study, are as follows: the occurrence frequency of traffic accidents was the highest in spring and the lowest in winter respectively. The clustering of traffic accident occurrence at nighttime was stronger than at daytime. In addition, terms of the analysis on the clustering of traffic accident according to land use, changes according to the seasons was not significant in commercial areas, while clustering density in winter tended to become significantly lower in residential areas. The analysis results of traffic accident types showed that the side-right angle collision of cars was the highest in frequency occurrence, and widespread in both commercial areas and residential areas. These results can provide us with important information to identify the occurrence pattern of traffic accidents in the structure of urban space, and it is expected that they will be appropriately utilized to establish measures to reduce traffic accidents.

Comparison of Predicted and Measured ASF (ASF 예측치와 실측치 비교)

  • Shin, Mi-Young;Hwang, Sang-Wook;Yu, Dong-Hui;Park, Chan-Sik;Lee, Chang-Bok;Lee, Sang-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.175-180
    • /
    • 2010
  • In the almost application parts, GNSS being used the primary navigation system on world-widely. However, some of nations attempt or deliberate to enhance current Loran system, as a backup to satellite navigation system because of the vulnerability to the disturbance signal. Loran interests in supplemental navigation system by the development and enhancement, which is called eLoran, and that consists of advancement of receiver and transmitter and of differential Loran in order to increase the accuracy of current Loran-C. A significant factor limiting the ranging accuracy of the eLoran signal is the ASF in the TOAs observed by the receiver. The ASF is mostly due to the fact that the ground-wave signal is likely to propagate over paths of varying conductivity and topography. This paper presents comparison results between the predicted ASF and the measured ASF in a southern east region of Korea. For predicting ASF, the Monteath model is used. Actual ASF is measured from the legacy Loran signal transmitted Pohang station in the GRI 9930 chain. The test results showed the repeatability of the measured ASF and the consistent characteristics between the predicted and the measured ASF values.

Registration Technique of Partial 3D Point Clouds Acquired from a Multi-view Camera for Indoor Scene Reconstruction (실내환경 복원을 위한 다시점 카메라로 획득된 부분적 3차원 점군의 정합 기법)

  • Kim Sehwan;Woo Woontack
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.3 s.303
    • /
    • pp.39-52
    • /
    • 2005
  • In this paper, a registration method is presented to register partial 3D point clouds, acquired from a multi-view camera, for 3D reconstruction of an indoor environment. In general, conventional registration methods require a high computational complexity and much time for registration. Moreover, these methods are not robust for 3D point cloud which has comparatively low precision. To overcome these drawbacks, a projection-based registration method is proposed. First, depth images are refined based on temporal property by excluding 3D points with a large variation, and spatial property by filling up holes referring neighboring 3D points. Second, 3D point clouds acquired from two views are projected onto the same image plane, and two-step integer mapping is applied to enable modified KLT (Kanade-Lucas-Tomasi) to find correspondences. Then, fine registration is carried out through minimizing distance errors based on adaptive search range. Finally, we calculate a final color referring colors of corresponding points and reconstruct an indoor environment by applying the above procedure to consecutive scenes. The proposed method not only reduces computational complexity by searching for correspondences on a 2D image plane, but also enables effective registration even for 3D points which have low precision. Furthermore, only a few color and depth images are needed to reconstruct an indoor environment.

Verifying the Voluntariness of the Location of Drunk Driving Accidents (음주운전사고 발생위치의 임의성 검증)

  • Nam, Kwang-Woo;Kang, In-Joo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.129-138
    • /
    • 2007
  • The cases of drunk driving accidents have been steadily increasing every year. The number of accidents was quadrupled from 7,303 cases in 1990 to 25,150 cases in 2004. In addition, the proportion of drunk driving accidents to total traffic accidents was 2.9% in 1990 but it increased to 13.0% in 2003. Studies of drunk driving accidents have been focusing on analyzing psychological decisive factors, classifying drivers' individual characters and types of drunk driving accidents by considering the location of drunk driving accidents. This study assumed that drunk driving accidents would have regular characteristics in respect to spatiality and analyzed its relation with spatial factors such as, accident black spot, the location of bars, the distance of drivers' houses, and spatio-temporal distributional characteristics through drawing density distribution and connecting the time of accidents. In order to achieve the goal of this study, the individual location information was organized and drawn as types of GIS data. From the result of density distribution using Kernel Density Mapping and analysis through the coefficient of areal correspondence, it was understood that drunk driving accidents correlates with some spatial factors.

  • PDF

Regionalization of Extreme Rainfall with Spatio-Temporal Pattern (극치강수량의 시공간적 특성을 이용한 지역빈도분석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Kim, Byung-Sik;Yoon, Seok-Yeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1429-1433
    • /
    • 2010
  • 수공구조물의 설계, 수자원 관리계획의 수립, 재해영향 검토 등을 수행할 때, 재현기간에 따른 확률개념의 강우량, 홍수량, 저수량 등을 산정하여 사용하게 되며, 보통 대상지역의 장기 수문관측 자료를 이용하여 수문사상의 확률분포를 산정한 후 재현기간을 연장하여 원하는 설계빈도에 해당하는 양을 추정하게 된다. 미계측지역 또는 관측자료의 보유기간이 짧은 지역의 경우는 지역빈도 분석 결과를 이용하게 된다. 지역빈도해석을 위해서는 강우자료들의 동질성을 파악하는 것이 가장 기본적인 과정이 되며 이를 위해 통계학적인 범주화분석이 선행되어야 한다. 지점 빈도분석의 수문학적 동질성 판별을 위해 L-moment 방법, K-means 방법에 의한 군집분석 등이 주로 사용되며 관측소 위치좌표를 이용한 공간보간법을 적용하여 시각화하고 있다. 강수량은 시공간적으로 변하는 수문변량으로서 강수량의 시간적인 특성 또한 강수량의 특성을 정의하는데 매우 중요한 요소이다. 이러한 점에서 본 연구를 통해 강수지점의 공간적인 좌표 및 강수량의 양적인 범주화에 초점을 맞춘 기존 지역빈도분석의 범주화 과정에 덧붙여 시간적인 영향을 고려할 수 있는 요소들을 결정하고 이를 활용할 수 있는 범주화 과정을 제시하고자 한다. 즉, 극치강수량의 발생 시기에 대한 정량적인 분석이 가능한 순환통계기법을 이용하여 관측 지점별 시간 통계량을 산정하고, 이를 극치강수량과 결합하여 시 공간적인 특성자료를 생성한 후 이를 이용한 군집화 해석 모형을 개발하는데 연구의 목적이 있다. 분석 과정에 있어서 시간속성의 정량화 및 일반화는 순환통계기법을 사용하였으며, 극치강수량과 발생시점의 속성자료는 각각의 평균과 표준편차를 이용하였다. K-means 알고리즘을 이용해 결합자료를 군집화 하고, L-moment 방법으로 지역화 결과에 대한 검증을 수행하였다. 속성 결합 자료의 군집화 효과는 모의데이터 실험을 통해 확인하였으며, 우리 나라의 58개 기상관측소 자료를 이용하여 분석을 수행하였다. 예비해석 단계에서 100회의 군집분석을 통해 평균적인 centroid를 산정하고, 해당 값을 본 해석의 초기 centroid로 지정하여, 변동적인 클러스터링 경향을 안정화시켜 해석이 반복됨에 따라 군집화 결과가 달라지는 오류를 방지하였다. 또한 K-means 방법으로 계산된 군집별 공간거리 합의 크기에 따라 군집번호를 부여함으로써 군집의 번호순서대로 물리적인 연관성이 인접하도록 설정하였으며, 군집간의 경계선을 추출할 때 발생할 수 있는 오류를 방지하였다. 지역빈도분석 결과는 3차원 Spline 기법으로 도시하였다.

  • PDF

Groundwater evaluation in the Bokha watershed of the Namhan River using SWAT-MODFLOW (SWAT-MODFLOW를 활용한 남한강 복하천유역의 지하수 모의 평가)

  • Han, Daeyoung;Lee, Jiwan;Jang, Wonjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.985-997
    • /
    • 2020
  • SWAT (Soil and Water Assessment Tool)-MODFLOW (Modular Groundwater Flow) is a coupled model that linking semi-distributed watershed hydrology with fully-distributed groundwater behavior. In this study, the groundwater simulation results of SWAT and SWAT-MODFLOW were compared for Bokhacheon watershed in Namhan river basin. The models were calibrated and validated with 9 years (2009~2017) daily streamflow (Q) data of Heungcheon (HC) water level gauge station and the daily groundwater level observation data of Yulheon (YH). For SWAT, the groundwater parameters of GW_DELAY, GWQMN, and ALPHA_BF affecting baseflow and recession phase were treated. The SWAT results showed the coefficient of determination (R2) of 0.7 and Nash-Sutcliffe model efficiencies (NESQ, NSEinQ) for Q and 1/Q with 0.73 and -0.1 respectively. For SWAT-MODFLOW, the spatio-temporal aquifer hydraulic conductivity (K, m/day), specific storage (Ss, 1/m), and specific yield (Sy) were applied. The SWAT-MODFLOW showed R2, NSEQ, and NSEinQ of 0.69, 0.74, and 0.51 respectively. The SWAT-MODFLOW considerably enhanced the low flow simulation with the help of aquifer physical information. The total streamflow of SWAT and SWAT-MODFLOW were 718.6 mm and 854.9 mm occupying baseflow of 342.9 mm and 423.5 mm respectively.

Learning for Environment and Behavior Pattern Using Recurrent Modular Neural Network Based on Estimated Emotion (감정평가에 기반한 환경과 행동패턴 학습을 위한 궤환 모듈라 네트워크)

  • Kim, Seong-Joo;Choi, Woo-Kyung;Kim, Yong-Min;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.9-14
    • /
    • 2004
  • Rational sense is affected by emotion. If we add the factor of estimated emotion by environment information into robots, we may get more intelligent and human-friendly robots. However, various sensory information and pattern classification are prescribed for robots to learn emotion so that the networks are suitable for the necessity of robots. Neural network has superior ability to extract character of system but neural network has defect of temporal cross talk and local minimum convergence. To solve the defects, many kinds of modular neural networks have been proposed because they divide a complex problem into simple several subproblems. The modular neural network, introduced by Jacobs and Jordan, shows an excellent ability of recomposition and recombination of complex work. On the other hand, the recurrent network acquires state representations and representations of state make the recurrent neural network suitable for diverse applications such as nonlinear prediction and modeling. In this paper, we applied recurrent network for the expert network in the modular neural network structure to learn data pattern based on emotional assessment. To show the performance of the proposed network, simulation of learning the environment and behavior pattern is proceeded with the real time implementation. The given problem is very complex and has too many cases to learn. The result will show the performance and good ability of the proposed network and will be compared with the result of other method, general modular neural network.

A Design of Time-based Anomaly Intrusion Detection Model (시간 기반의 비정상 행위 침입탐지 모델 설계)

  • Shin, Mi-Yea;Jeong, Yoon-Su;Lee, Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1066-1072
    • /
    • 2011
  • In the method to analyze the relationship in the system call orders, the normal system call orders are divided into a certain size of system call orders to generates gene and use them as the detectors. In the method to consider the system call parameters, the mean and standard deviation of the parameter lengths are used as the detectors. The attack of which system call order is normal but the parameter values are changed, such as the format string attack, cannot be detected by the method that considers only the system call orders, whereas the model that considers only the system call parameters has the drawback of high positive defect rate because of the information obtained from the interval where the attack has not been initiated, since the parameters are considered individually. To solve these problems, it is necessary to develop a more efficient learning and detecting method that groups the continuous system call orders and parameters as the approach that considers various characteristics of system call related to attacking simultaneously. In this article, we detected the anomaly of the system call orders and parameters by applying the temporal concept to the system call orders and parameters in order to improve the rate of positive defect, that is, the misjudgment of anomaly as normality. The result of the experiment where the DARPA data set was employed showed that the proposed method improved the positive defect rate by 13% in the system call order model where time was considered in comparison with that of the model where time was not considered.