DOI QR코드

DOI QR Code

Groundwater evaluation in the Bokha watershed of the Namhan River using SWAT-MODFLOW

SWAT-MODFLOW를 활용한 남한강 복하천유역의 지하수 모의 평가

  • Han, Daeyoung (Department of Civil, Environmental, and Plant Engineering, Graduate School, Konkuk University) ;
  • Lee, Jiwan (Department of Civil, Environmental, and Plant Engineering, Graduate School, Konkuk University) ;
  • Jang, Wonjin (Department of Civil, Environmental, and Plant Engineering, Graduate School, Konkuk University) ;
  • Kim, Seongjoon (Division of Civil and Environmental Engineering, College of Engineering, Konkuk University)
  • 한대영 (건국대학교 일반대학원 사회환경플랜트공학과) ;
  • 이지완 (건국대학교 일반대학원 사회환경플랜트공학과) ;
  • 장원진 (건국대학교 일반대학원 사회환경플랜트공학과) ;
  • 김성준 (건국대학교 공과대학 사회환경공학부)
  • Received : 2020.08.26
  • Accepted : 2020.09.22
  • Published : 2020.11.30

Abstract

SWAT (Soil and Water Assessment Tool)-MODFLOW (Modular Groundwater Flow) is a coupled model that linking semi-distributed watershed hydrology with fully-distributed groundwater behavior. In this study, the groundwater simulation results of SWAT and SWAT-MODFLOW were compared for Bokhacheon watershed in Namhan river basin. The models were calibrated and validated with 9 years (2009~2017) daily streamflow (Q) data of Heungcheon (HC) water level gauge station and the daily groundwater level observation data of Yulheon (YH). For SWAT, the groundwater parameters of GW_DELAY, GWQMN, and ALPHA_BF affecting baseflow and recession phase were treated. The SWAT results showed the coefficient of determination (R2) of 0.7 and Nash-Sutcliffe model efficiencies (NESQ, NSEinQ) for Q and 1/Q with 0.73 and -0.1 respectively. For SWAT-MODFLOW, the spatio-temporal aquifer hydraulic conductivity (K, m/day), specific storage (Ss, 1/m), and specific yield (Sy) were applied. The SWAT-MODFLOW showed R2, NSEQ, and NSEinQ of 0.69, 0.74, and 0.51 respectively. The SWAT-MODFLOW considerably enhanced the low flow simulation with the help of aquifer physical information. The total streamflow of SWAT and SWAT-MODFLOW were 718.6 mm and 854.9 mm occupying baseflow of 342.9 mm and 423.5 mm respectively.

SWAT (Soil Water Assessment Tool)-MODFLOW은 준분포형 연속강우유출모형과 분포형 지하수 모형을 결합한 모델이다. 본 연구는 남한강에 위치한 복하천 유역의 지하수에 대해 SWAT과 SWAT-MODFLOW의 모의결과를 비교평가 하였다. 두 모델간의 비교에 앞서 각 모델은 유역 내 흥천 수위 관측소의 일별 유출량 자료와 율현 지하수위 관측데이터의 9년(2009 ~ 2017년)의 자료로 보정 및 검증되었다. SWAT의 경우 기저유량과 감수위에 영향을 주는 GW_DELAY, GWQMN과 ALPHA_BF를 이용하여 보정하였고 그 결과 결정계수(R2)는 0.70, Nash-sutcliffe 모델효율(NSEQ, NSEinQ)은 각각 0.73, -0.1을 나타냈다. SWAT-MODFLOW의 경우는 토양속성별 대수층 수리전도도(K, m/day), 비저류량(Ss, 1/m), 비산출량(Sy) 및 유효토심(m) 자료가 추가로 적용되었다. 동일 기간의 모의 결과 R2, NSEQ, NSEinQ는 각각 0.69, 0.74, 0.51을 나타냈다. 특히, SWAT-MODFLOW 적용결과 대수층의 수리지질학적 자료 입력을 통해 저유량 모의가 상당히 개선되었다. SWAT과 SWAT-MODFLOW의 총 유출량은 각각 718.6 mm, 854.9 mm이며 기저유량은 각각 342.9 mm, 423.5 mm로 산정되었다.

Keywords

References

  1. Arnold, J.G., Muttiah, R.S., Srinivasan, R., and Allen, P.M. (2000). "Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin." Journal of Hydrology, Elsevier, Vol. 227, pp. 21-40. https://doi.org/10.1016/S0022-1694(99)00139-0
  2. Bailey, R., Park, S.G., Bieger, K., Arnold, J.G., and Allen, P.M. (2020). "Enhancing SWAT+ simulation of groundwater flow and groundwater-surface water interactions using MODFLOW routines." Environmental Modelling and Software, Elsevier, Vol. 126, 104660. https://doi.org/10.1016/j.envsoft.2020.104660
  3. Bailey, R.T., Wible, T.C., Arabi, M., Records, R.M., and Ditty, J. (2016). "Assessing regional-scale spatio-temporal patterns of groundwater-surface water interactions using a coupled SWAT-MODFLOW model." Hydrological Processes, Wiley Online Library, Vol. 30, No. 23, pp. 4420-4433. https://doi.org/10.1002/hyp.10933
  4. Chung, S.O., Lee, Y.D., and Min, B.H. (1994). "An analysis of groundwater flow at Bugok Area Using MODFLOW." Korea Water Resources Association, KWRA, Vol. 27, No. 1, pp. 79-88.
  5. Dar, I.A., Sankar, K., and Dar, M.A. (2010). "Remote sensing technology and geographic information system modeling: An integrated approach towards the mapping of groundwater potential zones in Hardrock terrain Mamundiyar basin." Journal of Hydrology, Elsevier, Vol. 394, No. 3-4, pp. 285-295. https://doi.org/10.1016/j.jhydrol.2010.08.022
  6. Fatemeh, A., Ryan, T.B., Ali, T, Andre, D., Mazdak, A., and Kurt, Z. (2019). "Coupled SWAT-MODFLOW model for large-scale mixed agro-urban river basins." Environmental Modelling & Software, Elsevier, Vol. 115, pp. 200-210. https://doi.org/10.1016/j.envsoft.2019.02.014
  7. Freeze, R.A., and Cherry, J.A. (1979) Groundwater. Prentice Hall, Upper Saddle River, N.J., U.S.
  8. Ghosh, P.K., Bandyopadhyay, S., and Jana, N.C. (2016). "Mapping of groundwater potential zones in hard rock terrain using geoinformatics: A case of Kumari watershed in western part of West Bengal." Modeling Earth Systems and Environment, Springer, Vol. 2, No. 1.
  9. Goodarzi, M., Abedi-Koupai, J., Heidarpour, M., and Safav, H.R. (2016). "Evaluation of the effects of climate change on groundwater recharge using a hybrid method." Water Resources Management, Springer, Vol. 30, No. 1, pp. 133-148. https://doi.org/10.1007/s11269-015-1150-4
  10. Heo, Y.T., Park, J.H., Hwang, M.H., Jang, S.Y., Kim, B.W., and Park, G.Y. (2017). Coupling of Long-term Surface Runoff and Ground Water Movement. 17-01, Korea water resources corporation.
  11. Hue, C.H. (2003). "Groundwater Flow Analysis using MODFLOW in the Tunnel." Korea Water Resources Association, KWRA, Vol. 36, No. 1, pp. 129-142. https://doi.org/10.3741/JKWRA.2003.36.1.129
  12. Izady, A., Davary, K., Alizadeh, A., Ziaei, A.N., Akhavan, S., Alipoor, A. Joodavi, A., and Brusseau, M.L. (2015). "Groundwater conceptualization and modeling using distributed SWAT-based recharge for the semi-arid agricultural Neishaboor plain." Iran. Hydrogeology Journal, Springer, Vol. 23, No. 1, pp. 47-68. https://doi.org/10.1007/s10040-014-1219-9
  13. Jang, W.S., Engel, B., and Ryu, J. (2018). "Efficient flow calibration method for accurate estimation of baseflow using a watershed scale hydrological model (SWAT)." Ecological Engineering, Elsevier, Vol. 125, pp. 50-67. https://doi.org/10.1016/j.ecoleng.2018.10.007
  14. Johnson, A.I. (1967). Specific yield-compilation of specific yields forvarious materials. No. 1662, US Government Printing Office.
  15. Kim, D.R., and Kim, S.J. (2017). "A study on parameter estimation for SWAT calibration considering streamflow of long-term drought periods." Journal of the Korean Society of Agricultural Engineer, KSAE, Vol. 59, No. 2, pp. 19-27. https://doi.org/10.5389/KSAE.2017.59.2.019
  16. Kim, J.T., KiM, M.I., Chung, I.M., Kim, N.W., and Jeong, G.C. (2009). "An analysis of groundwater level fluctuation caused by construction of groundwater dam." The Journal of Engineering Geology, KSEG, Vol. 19, No. 2, pp. 227-233.
  17. Kim, N.W., Chung, I.M., and Won, Y.S. (2004). "The development of fully coupled SWAT-MODFLOW model (I) model development." Korea Water Resources Association, KWRA, Vol. 37, No. 6, pp. 499-507. https://doi.org/10.3741/JKWRA.2004.37.6.499
  18. Kim, N.W., Chung, I.M., and Won, Y.S. (2006). "An integrated surface water-groundwater modeling by using fully combined SWAT-MODFLOW model." Korean Society of Civil Engineering, KSCE, Vol. 26, No. 5B, pp. 481-488.
  19. Kim, N.W., Chung, I.M., Won, Y.S., and Arnold, J.G. (2008). "Development and application of the integrated SWAT-MODFLOW model." Journal of Hydrology, Elsevier, Vol. 356, No. 1-2, pp. 1-16. https://doi.org/10.1016/j.jhydrol.2008.02.024
  20. Kim, N.W., Lee, J., and Lee, J.E. (2013). "Estimation of natural streamflow for the Bokhacheon middle-upper watershed." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 12, pp. 1169-1180. https://doi.org/10.3741/JKWRA.2013.46.12.1169
  21. Kim, Y.G., Seo, S.B., and Kim, Y.O. (2018). "Development of a hybrid regionalization model for estimation of hydrological model parameters for ungauged watersheds." Korea Water Resources Association, KWRA, Vol. 51, No. 8, pp. 677-686.
  22. Kim, Y.W., Lee, J.W., Woo, S.Y., and Kim, S.J. (2020). "Inter-basin water transfer modeling from Seomjin River to Yeongsan River using SWAT." Korea Water Resources Association, KWRA, Vol. 53, No. 1, pp. 57-70.
  23. Lee, J.M., Park, Y.S., Jung, Y.H., Cho, J.P., Yang, J.E., Lee, G.J., Kim, K.S., and Lim, K.J. (2014). "Analysis of spatiotemporal changes in groundwater recharge and baseflow using SWAT and BFlow Models." Journal of Korean society on Water Environment, KSWE, Vol. 30, No. 5, pp. 549-558. https://doi.org/10.15681/KSWE.2014.30.5.549
  24. Lee, J.W., Jung, C.G., Kim, D.R., and Kim, S.J. (2018). "Assessment of future climate change impact on groundwater level behavior in Geum river basin using SWAT." Korea Water Resources Association, KWRA, Vol. 51, No. 3, pp. 247-261.
  25. Liu, C.W., Chou, Y.L., Lin, S.T., Lin, G.J., and Jang, C.S. (2010). "Management of high groundwater level aquifer in the Taipei basin." Water resources management, Springer, Vol. 24, No. 13, pp. 3513-3525. https://doi.org/10.1007/s11269-010-9617-9
  26. Liu, W., Bailey, R.T., Andersen, H.E., Jeppesen, E., Nielsen, A., Peng, K., Eugenio, M.,N, Par, S.G., Thodsen, H., and Trolle, D. (2020) "Quantifying the effects of climate change on hydrological regime and stream biota in a groundwater-dominated catchment: A modelling approach combining SWAT-MODFLOW with flow-biota empirical models." Science of the Total Environment, Elsevier, Vol. 745, 140933. https://doi.org/10.1016/j.scitotenv.2020.140933
  27. Murmu, P., Kumar, M., Lal, D., Sonker, I., and Singh, S.K. (2019). "Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India." Groundwater for Sustainable Development, Elsevier, Vol. 9. 100239. https://doi.org/10.1016/j.gsd.2019.100239
  28. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. (2001). Soil and water assessment tool; the theoretical documentation. U.S Agricultural Research Service, pp. 340-367.
  29. Oh, S.H., Kim, Y.C., and Koo, M.H. (2011). "Modeling artificial groundwater recharge in the Hancheon Drainage Area, Jeju island, Korea." Journal of Soil and Groundwater Environment, KSSGE, Vol. 16, No. 6, pp. 34-45. https://doi.org/10.7857/JSGE.2011.16.6.034
  30. Ryu, J,C., Mun, Y.R., Moon, J.P., Kim, I.J., OK, Y.S., Jang, W.S., Kang, H.W., and Lim, K.J. (2011). "Development and application of the SWAT HRU mapping module for estimation of groundwater pollutant loads for each HRU in the SWAT Model." Environmental Policy Research, KEI, Vol. 10, No. 1, pp. 49-70.
  31. Steven, P.L., James, J.B., and Steven, M.G. (2005). "Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment." water resources research, AGU, Vol. 41, W07030. https://doi.org/10.1029/2005WR003942
  32. Son, K.H., and Kim, J.K. (2008). "Application of Proxy-basin differential split-sampling and blind-validation tests for evaluating hydrological impact of climate change using SWAT." Korea Water Resources Association, KWRA, Vol. 41, No. 10, pp. 969-982. https://doi.org/10.3741/JKWRA.2008.41.10.969
  33. Sophocleous, M.S., Perkins, S.P., Stadnyk, N.G., and Kaushal. R.S. (1997). Lower republican stream-aquifer project, Final Report, Kansas Geological Survey Open File Report 97-8, 1930 Constant Avenue. KS 66047-3726, University of Kansas Lawrence.