• Title/Summary/Keyword: Temperature-dependent development rate model

Search Result 44, Processing Time 0.025 seconds

Temperature-dependent Development Model of Paromius exiguus (Distant) (Heteroptera: Lygaeidae) (흑다리긴노린재[Paromius exiguus (Distant)] 온도발육 모형)

  • Park, Chang-Gyu;Park, Hong-Hyun;Uhm, Ki-Baik;Lee, Joon-Ho
    • Korean journal of applied entomology
    • /
    • v.49 no.4
    • /
    • pp.305-312
    • /
    • 2010
  • The developmental time of immature stages of Paromius exiguus (Distant) was investigated at nine constant temperatures (15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, $35{\pm}1^{\circ}C$), 20-30% RH, and a photoperiod of 14:10h (L:D). Eggs did not develop at $15^{\circ}C$, and their developmental time decreased with increasing temperatures. Its developmental time was longest at $17.5^{\circ}C$ (28.2 days) and shortest at $35^{\circ}C$ (5.9 days). The first nymphs failed to reach the next nymphal stage at 17.5 and $35^{\circ}C$. Nymphal developmental time decreased with increasing temperatures between $20^{\circ}C$ and $32.5^{\circ}C$, and developmental rate was decreased at temperatures above $30^{\circ}C$ in all stages except for the fourth nymphal stage. The relationship between developmental rate and temperature fit a linear model and three nonlinear models (Briere 1, Lactin 2, and Logan 6). The lower threshold temperature of egg and total nymphal stage was $l3.8^{\circ}C$ and $15.3^{\circ}C$, respectively. The thermal constant required to reach complete egg and the total nymphal stage was 109.9 and 312.5DD, respectively. The Logan-6 model was best fitted ($r^2$=0.94-0.99), among three nonlinear models. The distribution of completion of each development stage was well described by the 3-parameter Weibull function ($r^2$=0.91-0.99).

Development and Validation of a Predictive Model for Listeria monocytogenes Scott A as a Function of Temperature, pH, and Commercial Mixture of Potassium Lactate and Sodium Diacetate

  • Abou-Zeid, Khaled A.;Oscar, Thomas P.;Schwarz, Jurgen G.;Hashem, Fawzy M.;Whiting, Richard C.;Yoon, Kisun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.718-726
    • /
    • 2009
  • The objective of this study was to develop and validate secondary models that can predict growth parameters of L. monocytogenes Scott A as a function of concentrations (0-3%) of a commercial potassium lactate (PL) and sodium diacetate (SDA) mixture, pH (5.5-7.0), and temperature (4-37DC). A total of 120 growth curves were fitted to the Baranyi primary model that directly estimates lag time (LT) and specific growth rate (SGR). The effects of the variables on L. monocytogenes Scott A growth kinetics were modeled by response surface analysis using quadratic and cubic polynomial models of the natural logarithm transformation of both LT and SGR. Model performance was evaluated with dependent data and independent data using the prediction bias ($B_f$) and accuracy factors ($A_f$) as well as the acceptable prediction zone method [percentage of relative errors (%RE)]. Comparison of predicted versus observed values of SGR indicated that the cubic model fits better than the quadratic model, particularly at 4 and $10^{\circ}C$. The $B_f$and $A_f$for independent SGR were 1.00 and 1.08 for the cubic model and 1.08 and 1.16 for the quadratic model, respectively. For cubic and quadratic models, the %REs for the independent SGR data were 92.6 and 85.7, respectively. Both quadratic and cubic polynomial models for SGR and LT provided acceptable predictions of L. monocytogenes Scott A growth in the matrix of conditions described in the present study. Model performance can be more accurately evaluated with $B_f$and $A_f$and % RE together.

Temperature-dependent Development Model of Larvae of Mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae) (갈색거저리(Tenebrio molitor L.) 유충의 온도발육 모형)

  • Koo, Hui-Yeon;Kim, Seon-Gon;Oh, Hyung-Keun;Kim, Jung-Eun;Choi, Duck-Soo;Kim, Do-Ik;Kim, Iksoo
    • Korean journal of applied entomology
    • /
    • v.52 no.4
    • /
    • pp.387-394
    • /
    • 2013
  • The developmental times of mealworm beetle larvae, Tenebrio molitor were studied at six temperatures ranging from 15 to $30^{\circ}C$ with 60~70% RH, and a photoperiod of 14L:10D. Mortality of larval period was very low at 17 and $20^{\circ}C$ but did not die over $22^{\circ}C$. Developmental time of larva was decreased with increasing temperature. The total developmental time of T. molitor larvae was longest at $17^{\circ}C$ (244.3 days) and shortest at $30^{\circ}C$ (110.8 days). Egg and larvae were not developed at $15^{\circ}C$. The lower developmental threshold and effective accumulative temperatures for the total larval stages were $6.0^{\circ}C$ and 2564.1 degree-days, respectively. The relationship between developmental rate and temperature was fitted by a linear model and nonlinear model of Logan-6($r^2$=0.95). The distribution of completion of each development stage was well described by the 2-parameter Weibull function ($r^2$=0.8502~0.9390).

Numerical Modeling of Shear Heating in 2D Elastoplastic Extensional Lithosphere using COMSOL Multiphysics® (콤솔 멀티피직스를 이용한 2차원 탄소성 인장 암석권 모형에서 발생하는 전단열에 관한 수치 모사 연구)

  • Jo, Taehwan;So, Byung-Dal
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • In the development of geodynamic structures such as subduction and rift zones, a weakening mechanism is essential for localized weak zone formation in the lithosphere. Shear heating, a weakening mechanism, generates short-wavelength temperature elevation in the lithosphere; the increased temperature can reduce lithospheric strength and promote its breakup. A two-dimensional elastoplastic extensional basin model was used to conduct benchmarking based on previous numerical simulation studies to quantitatively analyze shear heating. The amount of shear heating was investigated by controlling the yield strength, extensional velocity, and strain- and temperature-dependent weakening. In the absence of the weakening mechanism, the higher yield strength and extensional velocity led to more vigorous shear heating. The reference model with a 100-MPa yield strength and 2-cm/year extension showed a temperature increase of ~ 50 K when the bulk extension was 20 km (i.e., 0.025 strain). However, in the yield-strength weakening mechanism, depending on the plastic strain and temperature, more efficient weakening induced stronger shear heating, which indicates positive feedback between the weakening mechanism and the shear heating. The rate of shear heating rapidly increased at the initial stage of deformation, and the rate decreased by 80% as the lithosphere weakened. This suggests that shear heating with the weakening mechanism can significantly influence the strength of relatively undamaged lithosphere.

Temperature-dependent developmental models and fertility life table of the potato aphid Macrosiphum euphorbiae Thomas on eggplant (감자수염진딧물(Macrosiphum euphorbiae Thomas)의 온도발육모형과 출산생명표)

  • Jeon, Sung-Wook;Kim, Kang-Hyeok;Lee, Sang Guei;Lee, Yong Hwan;Park, Se Keun;Kang, Wee Soo;Park, Bueyong;Kim, Kwang-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.568-578
    • /
    • 2019
  • The nymphal development of the potato aphid, Macrosiphum euphorbiae (Thomas), was studied at seven constant temperatures (12.5, 15.0, 17.5, 20.0, 22.5, 25.0, and 27.5±1℃), 65±5% relative humidity (RH), and 16:8 h light/dark photoperiods. The developmental investigation of M. euphorbiae was separated into two steps, the 1st through 2nd and the 3rd through 4th stages. The mortality was under 10% at six temperatures. However, it was 53.0% at 27.5℃. The developmental time of the entire nymph stage was 15.5 days at 15.0℃, 6.7 days at 25.0℃, and 9.7 days at 27.5℃. In the immature stage, the lower threshold temperature of the larvae was 2.6℃ and the thermal constant was 144.5 DD. In our analysis of the temperature-development experiment, the Logan-6 model equation was most appropriate for the non-linear regression models (r2=0.99). When the distribution completion model of each development stage of M. euphorbiae larvae was applied to the 2-parameter and 3-parameter Weibull functions, each of the model's goodness of fit was very similar (r2=0.92 and 0.93, respectively). The adult longevity decreased as the temperature increased but the total fecundity of the females at each temperature was highest at 20℃. The life table parameters were calculated using the whole lifespan periods of M. euphorbiae at the above six temperatures. The net reproduction rate (R0) was highest at 20.0℃(63.2). The intrinsic rate of increase (rm) was highest at 25℃(1.393). The finite rate of doubling time (Dt) was the shortest at 25.0℃(2.091). The finite rate of increase (λ) was also the highest at 25.0℃(1.393). The mean generation time(T) was the shortest at 25.0℃(9.929).

FINITE ELEMENT STRESS ANALYSIS OF CLASS V COMPOSITE RESIN RESTORATION SUBJECTED TO CAVITY FORMS AND PLACEMENT METHODS (와동 형태와 충전 방법에 따른 Class V 복합 레진 수복치의 유한요소법적 응력 분석)

  • Son, Yoon-Hee;Cho, Byeong-Hoon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.91-108
    • /
    • 2000
  • Most of cervical abrasion and erosion lesions show gingival margin where the cavosurface angle is on cementum or dentin. Composite resin restoration of cervical lesion shrink toward enamel margin due to polymerization contraction. This shrinkage has clinical problem such as microleakage and secondary caries. Several methods to diminish contraction stress of composite resin restoration, such as modifying cavity form and building up restorations in several increments have been attempted. The purpose of this study was to compare polymerization contraction stress of composite resin in Class V cavity subjected to cavity forms and placement methods. In this study, finite element model of 5 types of Class V cavity was developed on computer tomogram of maxillary central incisor. The types are : 1) Box cavity 2) Box cavity with incisal bevel 3) V shape cavity 4) V shape cavity with incisal bevel 5) Saucer shape cavity. The placement methods are 1) Incisal first oblique incremental curing 2) Bulk curing. An FEM based program for light activated polymerization is not available. For simulation of curing dynamics, time dependent transient thermal conduction analysis was conducted on each cavity and each placement method. For simulation of polymerization shrinkage, thermal stress analysis was performed with each cavity and each placement method. The time-temperature dependent volume shrinkage rate, elastic modulus, and Poisson's ratio were determined in thermal conduction data. The results were as follows : 1. With all five Class V cavifies, the highest Von Mises stress at the composite-tooth interface occurred at gingival margin. 2. With box cavity, V shape cavity and saucer cavity, Von Mises stress at gingival margin of V shape cavity was lower than the others. And that of box cavity was lower than that of saucer cavity. 3. Preparing bevel at incisal cavosurface margin decreased the rate of stress development in early polymerization stage. 4. Preparing bevel at incisal cavosurface margin of V shape cavity increased the Von Mises stress at gingival margin, but decreased at incisal margin. 5. At incisal margin, stress development by bulk curing method was rapid at early stage. Stress development by first increment of incremental curing method was also rapid but lower than that by bulk curing method, however after second increment curing final stress was the same for two placement methods. 6. At gingival margin, stress development by incremental curing method was suddenly rapid at early stage of second increment curing, but final stress was the same for two placement methods.

  • PDF

Comparison of Temperature-dependent Development Model of Aphis gossypii (Hemiptera: Aphididae) under Constant Temperature and Fluctuating Temperature (실내 항온과 온실 변온조건에서 목화진딧물의 온도 발육비교)

  • Kim, Do-Ik;Ko, Suk-Ju;Choi, Duck-Soo;Kang, Beom-Ryong;Park, Chang-Gyu;Kim, Seon-Gon;Park, Jong-Dae;Kim, Sang-Soo
    • Korean journal of applied entomology
    • /
    • v.51 no.4
    • /
    • pp.421-429
    • /
    • 2012
  • The developmental time period of Aphis gossypii was studied in laboratory (six constant temperatures from 15 to $30^{\circ}C$ with 50~60% RH, and a photoperiod of 14L:10D) and in a cucumber plastic house. The mortality of A. gossypii in the laboratory was high in the 2nd (20.0%) and 3rd stage(13.3%) at low temperature but high in the 3rd (26.7%) and 4th stage (33.3%) at high temperatures. Mortality in the plastic house was high in the 1st and 2nd stage but there was no mortality in the 4th stage at low temperature. The total developmental period was longest at $15^{\circ}C$ (12.2 days) in the laboratory and shortest at $28.5^{\circ}C$ (4.09 days) in the plastic house. The lower threshold temperature at the total nymphal stage was $6.8^{\circ}C$ in laboratory. The thermal constant required to reach the total nymphal stage was 111.1DD. The relationship between the developmental rate and temperature fit the nonlinear model of Logan-6 which has the lowest value for the Akaike information criterion(AIC) and Bayesian information criterion(BIC). The distribution of completion of each development stage was well described by the 3-parameter Weibull function ($r^2=0.89{\sim}0.96$). This model accurately described the predicted and observed outcomes. Thus it is considered that the model can be used for predicting the optimal spray time for Aphis gossypii.

A study on Crack Healing of Various Glassy Polymers (part I) -theoretical modeling- (유리질 중합체의 균열 Healing에 관한 연구 (제1보) -이론 모델링-)

  • Lee, Ouk-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.1
    • /
    • pp.40-49
    • /
    • 1986
  • Crack, craze and void are common defects which may be found in the bulk of polymeric materials such as either themoplastics or thermosets. The healing phenomena, autohesion, of these defects are known to be a intrinsic material property of various polymeric materials. However, only a few experimental and theoretical investigations on crack, void and craze healing phenomena for various polymeric materials have been reported up to date [1, 2, 3]. This may be partly due to the complications of healing processes and lacking of appropriate theoretical developments. Recently, some investigators have been urged to study the healing phenomena of various polymenic materials since the significance of the use of polymer based alloys or composites has been raised in terms of specific strength and energy saving. In the earlier published reports [1, 2, 3, 4], the crack and void healing velocity, healing toughness and some other healing mechanical and physical properties were measured experimentally and compared with predicted values by utilizing a simple model such as the reptation model under some resonable assumptions. It seems, however, that the general acceptance of the proposed modeling analyses is yet open question. The crack healing processes seem to be complicate and highly dependent on the state of virgin material in terms of mechanical and physical properties. Furthermore, it is also strongly dependent on the histories of crack, craze and void development including fracture suface morphology, the shape of void and the degree of disentanglement of fibril in the craze. The rate of crack healing may be a function of environmental factors such as healing temperature, time and pressure which gives different contact configurations between two separated surfaces. It seems to be reasonable to assume that the crack healing processes may be divided in several distinguished steps like stress relaxation with molecular chain arrangement, surface contact (wetting), inter- diffusion process and com;oete healing (to obtain the original strength). In this context, it is likely that we no longer have to accept the limitation of cumulative damage theories and fatigue life if it is probable to remove the defects such as crack, craze and void and to restore the original strength of polymers or polymer based compowites by suitable choice of healing histories and methods. In this paper, we wish to present a very simple and intuitive theoretical model for the prediction of healed fracture toughness of cracked or defective polymeric components. The central idea of this investigation, thus, may be the modeling of behavior of chain molecules under healing conditions including the effects of chain scission on the healing processes. The validity of this proposed model will be studied by making comparisons between theoretically predicted values and experimentally determined results in near future and will be reported elsewhere.

  • PDF

Rheological Properties of Gelatinized Model Foods (모형식품의 리올로지 특성)

  • Chun, Ki-Chul;Park, Young-Deok;Chang, Kyu-Seob
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.1
    • /
    • pp.103-109
    • /
    • 1995
  • The model foods were prepared by simulating mositure, protein and starch, and they were heated for 30 mins, at $80^{\circ}C$ and then cooled at $25^{\circ}C$ in water bath. Their rheological properties were investigated by the use of Brookfield wide-gap rotational viscometer at $30{\sim}60^{\circ}C$, and the rotation speed ranged from 0.6 to 6 rpm and solid content ranged from 8% to 11%, the results obtained were as follows. 1. All the model foods ($P_1S_3$, $P_2S_2$, $P_1S_1$, $P_2S_1$, $P_3S_1$, $P_4S_0$) exhibited pseudoplastic behaviors with yeild stress and were thixotropic foods which showed time - dependent structural decays, but the starch food of 8 ~ 11 % solid content did not show the flow behavior. 2. The correlation between the rheological parameters and the protein content of model foods in various moisture content did not appeared a constant relationship. 3. The change of shear stress against shear rate in high starch foods was larger than that in high protein foods and the structure at initial shear time was decayed with a quatic equation according to the Tiu's Model and structural decay was in parallel with the increase of shear rate. 4. The temperature dependency of the apparent viscosity of $P_1S_2$, and $P_2S_1$ was fully expressed by Arrhenius equation and activation energies of their food were 2.35 and $1.34Kcal/g{\cdot}mol$, respectively.

  • PDF

Life Table Analysis of the Cabbage Aphide, Brevicoryne brassicae (Linnaeus) (Homoptera: Aphididae), on Tah Tsai Chinese Cabbages (다채를 기주로 양배추가루진딧물[Brevicoryne brassicae (Linnaeus)]의 생명표 분석)

  • Kim, So Hyung;Kim, Kwang-Ho;Hwang, Chang-Yeon;Lim, Ju-Rak;Kim, Kang-Hyeok;Jeon, Sung-Wook
    • Korean journal of applied entomology
    • /
    • v.53 no.4
    • /
    • pp.449-456
    • /
    • 2014
  • Life table analysis and temperature-dependent development experiments were conducted to understand the biological characteristics of the cabbage aphid, Brevicoryne brassicae (Linnaeus) on detached Tah Tsai Chinese cabbage (Brassica campestris var. narinosa) leaves at seven constant temperatures (15, 18, 21, 24, 27, 30 and $33{\pm}1^{\circ}C$; $65{\pm}5%$ RH; 16L:8D). Mortality was lowest at $24^{\circ}C$ with 18% and 0% at $1^{st}{\sim}2^{nd}$ and $3^{rd}{\sim}4^{th}$ nymphal stages, respectively. The developmental period of $1^{st}{\sim}2^{nd}$ nymphal stage was 8.4 days at $18^{\circ}C$, and it decreased with increasing temperature. The developmental period of the $3^{rd}{\sim}4^{th}$ nymphal stage was 6.7 days at $18^{\circ}C$. The lower threshold temperature calculated using a linear model was $7.8^{\circ}C$, and the effective accumulative temperature was 120.1DD. Adult longevity was 14.9 days at $21^{\circ}C$, and total fecundity was observed 58.5 at $24^{\circ}C$. According to the life table, the net reproduction rate was 47.5 at $24^{\circ}C$, and the intrinsic rate of increase and the finite rate of increase were 0.36 and 1.43, respectively, at $27^{\circ}C$. The doubling time was 1.95d at $27^{\circ}C$, and mean generation time was 7.43d at $30^{\circ}C$.