• Title/Summary/Keyword: Temperature wake

Search Result 68, Processing Time 0.03 seconds

The effect of free stream turbulence on the near wake behind a circualr cylinder (원주의 근접후류에 대한 자유흐름 난류강도의 영향)

  • 김경천;정양범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2062-2072
    • /
    • 1991
  • The effect of free stream turbulence on the flow characteristics behind a circular cylinder is investigated in the present experimental study. The various free stream turbulent intensities are generated by different combinations of cylinder locations and grid shapes. Split film sensor with constant temperature anemometer is used to measure the local instantaneous velocity components. Experimental results demonstrate the large scale coherent structures are rapidly distorted and the Strouhal number is decreased with increasing free stream turbulent intensity.

The Characteristics of Two-Dimensional Turbulent Wake Flow Past a Rectangular Cylinder (장방형주 후류의 2차원 난류특성)

  • 남청도;조석호;부정숙
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.62-71
    • /
    • 1990
  • Two-dimensional turbulent wake flow past a rectangular cylinder is investigated experimentally by using the linearized constant temperature hot-wire anemometer. Some of turbulent characteristics are obtained at the range of X=6B-500B downstream from the cylinder and the Reynolds number range is 500-2800. For the statistical treatment, autocorrelation coefficient, probability density function and power spectral density function are obtained by using the signal analyzer. It is clear that coherent structure of strong periodic eddies exists to the position of 20B downstream from the cylinder, and its feature is similar to round type as nearer to the cylinder while it is stretched longitudinally along with flow direction as the distance from the cylinder is increased to downstream.

  • PDF

A Numerical Optimization Study on the Ventilation Flows in a Workshop (작업장 환기장치 최적화 유동 연구)

  • 엄태인;장동순
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.1
    • /
    • pp.64-73
    • /
    • 1995
  • A preliminary study is performed in order to design an effective ventilation equipment for the control of possible pollutants in a workshop. To this end, the Patankar's SIMPLE methodology is used to investigate the flow characteristics of the contaminated thermal deflected jet which is encounted often in practical hood system. SIMPLE-Consistent algorithm is employed for the pressure-velocity coupling appeared in momentum equations. A two equation, k-$\varepsilon$ model is used for Reynolds stresses. The prediction data is compared well against the experimental results by Chang(1989). Considering the control of the wake due to its high turbulence together with the stagnant feature has been investigated in term of major parameters such as temperature and magnitude of the discharge velocity. Detailed discussions are made to reduce the size of the wake region which give rise to pollutant concentration stratification.

  • PDF

A Study on Prediction of the Base Pressures for an Axi-Symmetric Body

  • Baik, Doo-Sung;Han, Young-Chool
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1423-1433
    • /
    • 2001
  • A flow modeling method has been developed to analyze the flow in the annular base (rear- facing surface) of a circular engine nacelle flying at subsonic speed but with a supersonic exhaust jet. Real values of exhaust gas properties and temperature at an altitude of 30, 000 feet are employed. Potential flows of the air and gas streams are computed for the flow past a separated wake. Then a viscous jet mixing is superimposed on this inviscid solution. Conserva- tion of mass, momentum and energy for the wake flow field is achieved by multiple iterations with modest computer requirements.

  • PDF

Effects of Thermal Interaction on Natural Convection From Discrete Heat Sources Mounted on a Vertical Plate (수직평판에 부착된 불연속 열원에 의한 자연대류에서 열원간의 열적 상호간섭에 관한 연구)

  • Park, H.S.;Choo, H.L.;Riu, K.J.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.39-47
    • /
    • 1998
  • The natural convection heat transfer in a vertical plate with discrete heat sources was studied experimentally. The particular interest was the thermal interaction of the heat sources. In this study, the radiative and conductive heat transfer were considered as heat loss, Thus, the net convective heat transfer rate was presented as adiabatic temperature and thermal wake function. As a results, for non-uniform heating condition, heat input ratio(q1/q2) was most dominant parameter for the thermal wake function. The convective heat transfer rate is decreased with the increasing of channel ratio. For the range of $7.50{\times}10^5<Rac<8.66{\times}10^6$, a useful correlation was proposed as a function of channel Rayleigh number.

  • PDF

A Study on the Combustion Characteristics of Diffusion Flame with the Fuel Injection Condition (연료분출 조건에 따른 확산화염의 연소특성에 관한 연구)

  • Lee, Sung-No;An, Jin-Geun
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.300-307
    • /
    • 2007
  • The combustion characteristics of diffusion flame formed in the wake of a cylindrical stabilizer with varying fuel injection angle were studied. This study was performed by measuring the flame stability limits, lengths and temperatures of recirculation zones of flames, turbulence intensity in the wake of stabilizer, and concentration distribution of combustion gas, and by taking photographs of flames. The flame stability limits are dependent on fuel injection angle and main air velocity. The length and temperature of recirculation zone are dependent on fuel injection angle. As the length of the recirculation zone is decreased, the flame shows more stable behavior. The temperature of recirculation zone has a maximum value at the condition of theoretical mixture. The flame stability is enhanced when the temperature in the recirculation zone decreases. The turbulence intensity in the wake of stabilizer is independent of the fuel injection angle, but it is affected by stabilizer itself and main air flow condition. If the stabilization characteristics of flame is good, the concentration of $C_3H_8$ is high, but the concentration of $CO_2$ is low at the boundary of recirculation zone. The combustion characteristics of diffusion flame can be controlled by changing the fuel injection angles. The appropriate fuel injection angle should be selected to get high combustion efficiency, high load power, low environmental pollution, and clean combustion condition of fuel.

  • PDF

Stabilization Characteristics of the Diffusion Flame Formed in the Wake of Bluff Body with Fuel Injection (연료분출을 수반하는 보염기 후류에 형성되는 확산화염의 보염특성)

  • 안진근
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.223-232
    • /
    • 2001
  • To study the stabilization characteristics of diffusion flame formed in the wake of a cylindrical bluff body with fuel injection, the flame stability limits, length and temperature of recirculation zone of flame, turbulence intensity distribution near the recirculation zone of flame were measured and analyzed. The length of recirculation zone is independent on main fuel injection quantity, but it is dependent on fuel injection angles, air stream velocity, and auxiliary fuel injection into recirculation zone. For diffusion flame, in general, the flame stabilization is deteriorated with increase of he length of recirculation zone, but if the turbulence generator is installed, the flame stabilization is improved with increase of the length of recirculation zone. The temperature of recirculation zone is dependent on fuel injection angles, auxiliary fuel injection into recirculation zone, turbulence generators, and it dependent on fuel injection angles, auxiliary fuel injection into recirculation zone, turbulence generators, and it has a maximum value at the condition of each theoretical mixture. In general, the more temperature of recirculation zone is low, the more flame is stable. But when the turbulence generator is installed, the more temperature of recirculation zone is low, the more flame is unstable. The turbulence intensity in the wake of bluff body is increased with increase of diameter or blockage ratio of grid. The more turbulence intensity is increased by installation of turbulence generator, the more flame is unstable. Finally, It is clear that the stabilization characteristics of diffuser flame can be controlled by some parameters such as fuel injection angles, auxiliary fuel injection into recirculation zone, turbulence generators.

  • PDF

Effect of Shift Interval for the Clinical Nurse on the Circadian Rhythm (임상 간호사의 교대근무 기간이 circadian rhythm 변화에 미치는 영향)

  • 황애란;정현숙;임영신;이혜원;김조자
    • Journal of Korean Academy of Nursing
    • /
    • v.21 no.2
    • /
    • pp.129-149
    • /
    • 1991
  • Circadian rhythm is entrained in the 24-hour time interval by periodic factors in the environment, known as zeitgeber. But most rotating work schedules are outside the range of the entrainment of the pacemaker timing the human circadian sleep - wake cycle. It has been postulated that physiological and emotional disturbances occur in most human functions when the circadian rhythm is disturbed. So application of circadian principles to the design of shift schedules can aid in maintaining the temporal integrity of the circadian system and thereby minimize for the shift worker any detrimental consequences of circadian disruption. This study was a quasi-experimental study to test the effect of shift intervals for the clinical nurse on the circadian rhythm. Twenty nurses newly employed in general units of two hospitals were selected as an experimental group and twelve college nursing students as a control group. Both groups were selected according to an established criteria using a purposive sampling technique. Ten subjects were assigned to a weekly shift group and another ten to a biweekly shift group engaged in a semi -continuous shift schedule(sunday off) with a backward direction, that is, morning -evening - night shift. The control group worked a morning shift for 42 days. Oral temperature rhythm, waking tim, sleep - wake cycle, fatigue, and mental performance were measured during the experimental period. The data collection period was from April 30, 1990 to June 10, 1990. MANOVA, paired t-test, ANOVA, and Student Newman Keuls method were used for statistical analysis. The results are summarized as follows. 1. Phase delay in the acrophase of temperature rhythm was shown according to the backward rotating shift. A complete adaptation to work on the night shift was achieved between the sixth and ninth day of the night shift. 2. There was no difference in either waking time or sleep- wake cycle according to the duration of the working day for every shift group. Significant difference was found in the waking time and the sleep -wake cycle for subjects on the morning, evening, and night shift in both of the shift groups(weekly shift group : λ=0.121, p<0.01, λ=0.112, p<0.01, biweekly shift group : λ=0.116, p<0.01, λ=0.084, p<0.01). 3. There was no difference in fatigue between the first working day and the last working day for the control group and for the biweekly shift group. In the weekly shift group, physical fatigue was significantly different for the first day and the sixth day of the night shift(t=-2.28, p<0.05). Physical fatigue and total fatigue on the first day of the night shift showed a significant difference among the control group, the weekly shift group, and the biweekly shift group(F=5.79, p<0.01, F=4.56, p<0.05). There was a significant difference between the shift groups and the control group(p<0.05), Physical fatigue, neurosensory fatigue and total fatigue on the last day of the night shift showed a significant difference among the control group, the weekly shift group, and the biweekly shift group(F=12.65, p<0.01, F=7.77, p<0.01, F=9.68, p<0.01). There was a significant difference between the shift groups and the control group(p<0.05). 4. No difference in mental performance was seen between the first day and the last day of work in each case. An arithmatic test on the first day of the night shift revealed a significant difference among the control group, the weekly shift group, and the biweekly shift group(F=3.79, p<0.05). There was a significant difference between the shift groups and the control group(p<0.05) . The digital symbol substitution test and the arithmetic test on the last day of the night shift showed a significant difference among the control group, the weekly shift group, and the biweekly shift group(F=3.68, p<0.05, F=5.55, p<0.01), and both showed a significant difference between the shift groups and the control group(p<0.05). Accordingly, this study showed that during night duty, the waking time, sleep- wake cycle, and fatigue increased and mental performance decreased compared with morning and evening duty. It was also found that the weekly shift group had a higher fatigue score on the sixth day of night duty as compared to the -first day, but the waking time, sleep- wake cycle, and mental performance revealed no difference for the duration of the night duty or between shift groups, and complete adaptation of temperature rhythm was achieved between the sixth and ninth day of night duty. It is possible to conclude from these results that for intermediate circadian type in a healthy young woman, a biweekly shift system is more compatible with the circadian timing system than weekly shift system.

  • PDF

Temperature Compensation of Complex Permittivities of Biological Tissues and Organs in Quasi-Millimeter-Wave and Millimeter-Wave Bands

  • Sakai, Taiji;Wake, Kanako;Watanabe, Soichi;Hashimoto, Osamu
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.231-236
    • /
    • 2010
  • This study proposes a temperature compensation method of the complex permittivities of biological tissues and organs. The method is based on the temperature dependence of the Debye model of water, which has been thoroughly investigated. This method was applied to measured data at room temperature for whole blood, kidney cortex, bile, liver, and heart muscle. It is shown that our method can compensate for the Cole-Cole model using measured data at 20 $^{\circ}C$, given the Cole-Cole model based on measured data at 35 $^{\circ}C$, with a root-mean-squared deviation of 3~11 % and 2~6 % for the real and imaginary parts of the complex permittivities, respectively, among the measured tissues.

Influence of Room Temperature and Strain Aging on the COD for a Small Fatigue Crack (室溫時效 및 變形時效가 微小 疲勞크랙의 開口變位에 미치는 影響)

  • 김민건
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.402-407
    • /
    • 1995
  • The effects of room temperature and strain aging treatment are discussed on the critical condition for the onset of growth of non-propagating cracks on 0.15% C low carbon steel, with special emphasis on the length of the critical non-propagating crack and on the crack opening displacement(COD) at the crack tip. It is found from the experimental analysis that room temperature and strain aging of a fatigue pre-cracked specimen introduced the closure of a crack tip of the pre-crack and the reduction of crack opening displacement at the wake of crack, together with an improvement in crack growth resistance of the microstructure. This may cause an increase in the endurance limit of the specimen, through the enhancement of effective stress for the onset of growth of the critical non-propagating crack.