• Title/Summary/Keyword: Temperature transient

Search Result 1,155, Processing Time 0.025 seconds

A NUMERICAL STUDY FOR IMPROVING PERFORMANCE ON PAINT DRYING SYSTEM OF A VEHICLE (차량 도장 건조 성능 향상을 위한 수치해석 연구)

  • Lee, Seung-Jae;Choi, Jong-Rak;Hur, Nahm-Keon;Kim, Hee-Soo
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.75-80
    • /
    • 2011
  • In this study, three-dimensional transient numerical simulations were carried out for a paint drying system of vehicle. The vehicle on assembly line passes through the drying system consisting of hot and cool air blow region. For the moving motion of the vehicle, moving of inlet boundary condition and MRF technique are used. The transient distribution of temperature and velocity in the drying system were predicted numerically. In order to validate the numerical results, transient distribution of the vehicle surface temperature was compared with experimental data, showing a good agreement. As a result of present study, optimal operating condition of the drying system are to be suggested.

Transient Piezothermoelasticity of a Piezo Ceramic Plate Subjected to Antisymmetric Thermal Load and Symmetric Thermal Load (압전 Ceramics 평판의 비대칭열부하와 대칭열부하에 의한 과도 압전열탄성 해석에 관한 연구)

  • Kim, Gyeong-Seok;Choe, Jeong-Seok;Yang, Seung-Pil;Kim, Yong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.133-143
    • /
    • 1997
  • Piezoelastic materials have recently attracted considerable attention because of their potential use in intelligent structural systems. In this paper, we treat a transient piezothermoelastic problem in a hexagonal plate of crystal class 6mm subjected to antisymmetric heating temperature. We analyze this problem by use of the potential function method. Numerical calculations are carried out for a cadmium selenide solid, and the results are presented graphically in comparison with those derived from the similar problem in a cadmium selenide plate subjected to symmetric heating temperature for a symmetry transient problem.

Asymmetric transient thermal stress of a functionally graded hollow cylinder with piecewise power law

  • Ootao, Yoshihiro;Ishihara, Masayuki
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.421-442
    • /
    • 2013
  • This paper is concerned with the theoretical treatment of transient thermoelastic problems involving a functionally graded hollow cylinder with piecewise power law due to asymmetrical heating from its surfaces. The thermal and thermoelastic constants of each layer are expressed as power functions of the radial coordinate, and their values continue on the interfaces. The exact solution for the two-dimensional temperature change in a transient state, and thermoelastic response of a hollow cylinder under the state of plane strain is obtained herein. Some numerical results for the temperature change and the stress distributions are shown in figures. Furthermore, the influence of the functional grading on the thermal stresses is investigated.

Transient thermal stresses of orthotropic functionally graded thick strip due to nonuniform heat supply

  • Ootao, Yoshihiro;Tanigawa, Yoshinobu
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.559-573
    • /
    • 2005
  • This paper is concerned with the theoretical treatment of transient thermal stresses involving an orthotropic functionally graded thick strip due to nonuniform heat supply in the width direction. The thermal and thermoelastic constants of the strip are assumed to possess orthotropy and vary exponentially in the thickness direction. The transient two-dimensional temperature is analyzed by the methods of Laplace and finite sine transformations. We obtain the exact solution for the simply supported strip under the state of plane strain. Some numerical results for the temperature change, the displacement and the stress distributions are shown in figures. Furthermore, the influence of the orthotropy and nonhomogeneity of the material is investigated.

Analysis of Transient Magnetic Diffusion in a High-Temperature Superconductor Tube (고온 초전도체 관에서의 과도 자기확산 해석)

  • 설승윤;정성기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.991-996
    • /
    • 2002
  • Transient magnetic diffusion process in a melt-cast BSCCO-2212 tube is analyzed by an analytical method. The transient diffusion partial differential equation is transformed into an ordinary differential equation by integral method. The penetration depth of magnetic field into a superconducting tube is obtained by solving the differential equation numerically. The results show that the penetration depth as a function of time which is somewhat different from the results by Bean's critical state model. The reason of the difference between the present results and that of Bean's model is discussed and compared in this paper.

Analysis of Transient Magnetic Diffusion in a High-Temperature Superconductor Tube (고온 초전도체 관에서의 과도 자기확산 해석)

  • Seol, S.Y.;Jung, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.41-45
    • /
    • 2002
  • Transient magnetic diffusion process in a melt-cast BSCCO-2212 tube is analyzed by an analytical method. The transient diffusion equation is transformed into an ordinary differential equation by integral method. The penetration depth of magnetic field into a superconducting tube is obtained by solving the differential equation numerically. The results show that the penetration depth as a function of time which is somewhat different from the results by Bean's critical current model. The reason of the difference between the present results and that of Bean's model is discussed and compared in this paper.

  • PDF

Performance evaluation technique of a heat exchanger using a transient response analysis (과도응답해석을 이용한 열교환기의 성능평가방법에 관한 연구)

  • Park, B.K.;Hong, T.;Park, S.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.81-90
    • /
    • 1999
  • The performance evaluation technique of a heat exchanger is described by using a transient response analysis for the determination of an average heat transfer coefficient. The model using a finite difference method can accommodate arbitrary inlet fluid temperature as well as longitudinal conduction. Temperature histories are obtained from the experiments at the inlet and outlet of test core. Heat transfer coefficient and friction factor of the plate array are obtained in short times using the data reduction program of transient response analysis in the single-blow method. The results agree very well with theoretical results. It is shown that the rms deviations are very small and the performance evaluation technique gives rapid and accurate results.

  • PDF

Transient Heat Transfer Analysis of Brake Drum Shape (브레이크 드럼의 형상에 따른 과도 열전달 해석)

  • Kim, Yang-Sul;An, Su-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.65-71
    • /
    • 2008
  • This paper presents a transient heat transfer analysis of a drum brake shape. The transient heat transfer analysis of automotive drum brakes with frictional contact is performed by using the finite element method. The drum brake type studied in the page is the internally expanding one in which two shoes fitted externally with frictional material are forced outward against surface a rotating drum on the wheel unit. In this case, the braking power is produced by the friction force between a drum and a lining, and is converted into heat. The brake drum has constant material properties. The air inside the drum has temperature-dependent thermal conductivity and enthalpy. Radiation effects are ignored. The result explains the reason why hair crack and cause of drum failure occur. The temperature of drum is in proportion to the drum thickness and nonlinear changes at every points of drum. It's necessary for the decrease of the drum temperature to make the air inside drum flow.

Transient Analysis of PT-IGBTs at High Temperature

  • Ryu Sehwan;Lee Hokil;Ahn Hyungkeun;Han Deuk-Young
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.39-43
    • /
    • 2001
  • In this paper, excess minority carrier distribution in drift and buffer layers and accumulated charges for PT IGST have been, for the first time, analytically expressed with different transient times, lifetimes and temperatures. Furthermore those parameters are also expressed with temperature to predict the transient response which are critical to the real operation. Active base region has been chosen to extract the temperature dependency of the device by including the buffer layer which is important but neglected due to the complexity up to now.

  • PDF

A Study on the Prediction of Plate Temperature in Indirectly-Fired Continuous Heat Treatment Furnace (간접 가열방식의 연속식 열처리로내 판(Plate) 온도해석에 관한 연구)

  • Kim Young-Deuk;Kang Deok-Hong;Kim Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.514-522
    • /
    • 2006
  • This study has been performed to predict the transient thermal behavior of the plate in indirectly-fired continuous heat treatment furnace. The temperature profiles in the plate are determined solving the transient one-dimensional heat conduction equations. To verify the validity of the present numerical results, the present results obtained from the transient analysis are compared with those of experiments. Extensive parametric investigations are performed to examine the effects of the emissivities of the plate and refractory, plate thickness and velocity, as well as the gas temperature, on the thermal behavior of the plate.