• Title/Summary/Keyword: Temperature separation

Search Result 1,240, Processing Time 0.027 seconds

Determination of Betaine in Fructus Lycii Using Hydrophilic Interaction Liquid Chromatography with Evaporative Light Scattering Detection

  • Shin, Hyun-Du;Suh, Joon-Hyuk;Kim, Jung-Hyun;Lee, Hye-Yeon;Eom, Han-Young;Kim, Un-Yong;Yang, Dong-Hyug;Han, Sang-Beom;Youm, Jeong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.553-558
    • /
    • 2012
  • A simple new method was developed for the determination of betaine in Fructus Lycii using hydrophilic interaction liquid chromatography with evaporative light scattering detection (HILIC-ELSD). Good chromatographic separation and reasonable betaine retention was achieved on a Kinetex HILIC column ($2.1{\times}100mm$, $2.6{\mu}m$) packed with fused-core particle. The mobile phase consisted of (A) acetonitrile and (B) 10 mM ammonium formate (pH 3.0)/acetonitrile (90/10, v/v). It was used with gradient elution at a flow rate of 0.7 mL/min. The column temperature was set at $27.5^{\circ}C$ and the injection volume was $10{\mu}L$. The ELSD drift tube temperature was $50^{\circ}C$ and the nebulizing gas (nitrogen) pressure was 3.0 bar. Stachydrine, a zwitterionic compound, was used as an internal standard. Calibration curve over $10-250{\mu}g/mL$ showed good linearity ($R^2$ > 0.9992) and betaine in the 70% methanol extract of Fructus Lycii was well separated from other peaks. Intraand inter-day precision ranged from 1.1 to 3.0% and from 2.4 to 5.3%, respectively, while intra- and inter-day accuracy ranged from 100.0 to 107.0% and from 94.3 to 103.9%, respectively. The limit of quantification (LOQ) was $10{\mu}g/mL$ and the recoveries were in the range of 98.2-102.7%. The developed HILIC-ELSD method was successfully applied to quantitatively determine the amount of betaine in fourteen Fructus Lycii samples from different locations, demonstrating that this method is simple, rapid, and suitable for the quality control of Fructus Lycii.

Adsorption Characteristics and Parameters of Acid Black and Quinoline Yellow by Activated Carbon (활성탄에 의한 Acid Black과 Quinoline Yellow의 흡착특성 및 파라미터)

  • Yi, Kyung Ho;Hwang, Eun Jin;Baek, Woo Seung;Lee, Jong-Jib;Dong, Jong-In
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.186-195
    • /
    • 2020
  • The isothermal adsorption, dynamic, and thermodynamic parameters of Acid black (AB) and Quinoline yellow (QY) adsorption by activated carbon were investigated using the initial concentration, contact time, temperature, and pH of the dyes as adsorption parameters. The adsorption equilibrium data fits the Freundlich isothermal adsorption model, and the calculated Freundlich separation factor values found that activated carbon can effectively remove AB and QY. Comparing the kinetic data showed that the pseudo second order model was within 10% error in the adsorption process. The intraparticle diffusion equation results were divided into two straight lines. Since the slope of the intraparticle diffusion line was smaller than the slope of the boundary layer diffusion line, it was confirmed that intraparticle diffusion was the rate-controlling step. The thermodynamic experiments indicated that the activation energies of AB and QY were 19.87 kJ mol-1 and 14.17 kJ mol-1, which corresponded with the physical adsorption process (5 ~ 40 kJ mol-1). The adsorption reaction was spontaneous because the free energy change in the adsorption of AB and QY by activated carbon was negative from 298 to 318 K. As the temperature increased, the free energy value decreased resulting in higher spontaneity. Adsorption of AB and QY by activated carbon showed the highest adsorption removal rate at pH 3 due to the effect of anions generated by dissociation. The adsorption mechanism was electrostatic attraction.

Separation Behavior of Cs and Sr on the Various Zeolites (각종 제올라이트계에서의 Cs 및 Sr 분리특성)

  • Lee, Eil-Hee;Lee, Won-Kyung;Yoo, Jae-Hyung;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.731-738
    • /
    • 1993
  • This study showed the adsorption behavior of Cs and Sr into the inorganic ion-exchanger zeolites such as 4A, 13X, AW300, AW500 and natural. It was found that the best type of zeolite is AW500 for Cs and 13X for Sr in terms of ion-exchange capacity. The temperature effect was also examined for the following systems : AW500-Cs, AW300-Cs, natural zeolite-Cs, 4A-Sr and 13X-Sr. Experiments showed that the effect of temperature on the ion-exchange capacity is negligible in all cases except for the systems of 4A-Sr and natural zeolite-Cs. The enhancement in the ion-exchange capacity for 4A-Sr would be caused by the Sr ion movement and the multilayer adsorption due to the heterogeneous characteristics of ion-exchange site. The distribution coefficient was increased with pH of the solution which is in equilibrium with zeolite particles. The values of $K_d$ in the systems of AW500-Cs and 4A-Sr were found to be about $10^3cm^3/g$ and $10^3{\sim}10^4cm^3/g$ respectively.

  • PDF

Characterization of Materials for Retort Processing in Oyster Porridge (레토르트 굴죽 제조를 위한 원료의 가공적성)

  • 허성호;이호재;홍정화
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.5
    • /
    • pp.770-774
    • /
    • 2002
  • The effect of mixing ratio of materials and their retort processing conditions on the physical properties and preference of oyster porridge were investigated. Rice gave adequate viscosity (about 800 cp) to the porridge as it was used 10~12% level and half of it was ground. Potato starch, waxy corn starch, and Perfectamyl AC showed small variation in viscosity unrelated to the temperature, that was a good condition for high quality porridge. Especially, waxy corn starch had a good property for retort porridge because its viscosity was maintained high during the processing and decreased to preferable one after processing. Purity CSC, modified starch gave gum-like texture and didn't cause water-separation much after freezing and thawing treatment of the porridge. Therefore, it was good for enhancing the physical property of the porridge as a co-additive of waxy corn starch when it was used at quarter level of waxy corn starch. Xanthan gum increased dispersibility of materials and it was useful for stabilizing physical quality of the porridge without affecting preference when it was used below 0.2% concentration. As a result, the optimal material-mixing ratio was determined as rice 10% (50% of it was ground), waxy corn starch 1.5%, Purity CSC 0.5%, xmthan gum 0.2%, salt 0.3%, and water 87.5%. Oyster's porridge, retort processed with this recipe, showed stable physical property after 6 month storage at room temperature.

Separation of Chromophoric Substance from Sappanwood under Different Extraction Conditions (염료 추출조건에 따른 소목의 색소성분 분리 거동)

  • Ahn, Cheun-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.12
    • /
    • pp.1653-1661
    • /
    • 2007
  • The research aimed to establish the standard extraction procedure for examining brazilin, the major chromophoric substance of Sappanwood, using GC-MS with the ultimate goal of identifying the sappanwood dye in severely faded archaeological textiles. The amount of brazilin represented by the GC abundance was the largest when acetone was used as the extraction medium, followed by methanol. Shaking plate operated at room temperature was more effective than the waterbath shaker which was operated at $30^{\circ}C$. In both cases, the extraction method which incorporated one hour pre-soaking before the 12 hours of actual extraction resulted in a larger amount of brazilin detection than the extraction procedure without the one hour pre-soaking. In case of water extraction, pH 5 resulted in the most effective pH level for the extraction of brazilin, The best GC-MS parameter for detecting brazilin was to set the column temperature initially at $50^{\circ}C$. gradually increase to $210^{\circ}C$ at a $23^{\circ}C/min$ rate, finally increase to $305^{\circ}C$ at $30^{\circ}C/min$ rate, and hold for 14 minutes, and the MSD scan range at $75{\sim}400m/z$.

Refinement of Phosphogypsum by Selective Dehydration & Hydration (수화특성차이(水和特性差異)를 이용(利用)한 인산부생석고(燐酸副生石膏)로부터 정제석고(精製石膏)의 회수(回收))

  • Lee, Jung-Mi;Song, Young-Jun;Park, Charn-Hoon
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.46-57
    • /
    • 2006
  • This study was carried out for the purpose of recovering the refined gypsum from waste phosphogypsum. The refined gypsum was recovered as a under product of 325 mesh wet screening followed by dehydration and hydration stage. The influence of dehydration temperature and time, dehydration rate, aging time, slurry density of hydration and sonication time on the yield and grade of gypsum were investigated. The refined gypsum of $94{\sim}96%$ grade is recovered in 95% yield by wet screening after selective dehydration and hydration process, from the phosphogypsum. For the better separation efficiency of gypsum, it is recommended to treat the phosphogypsum at the conditions of as follows; 6hr's dehydration at $140^{\circ}C$, hydration slury density of $3{\sim}10%$, hydration temperature of $20{\sim}30^{\circ}C$, hydration time of 2hr. In additions, addition of sodium citrate 0.005M and sonication of $5{\sim}10min.$ are effective for increase the recovery of gypsum. On the other hand, aging the dehydrated gypsum 16 hours or longer make decrease the recovery of gypsum remarkably.

Adsorption/Desorption Characteristics of Vanadium from Ammonium Metavanadate using Anion Exchange Resin (음(陰)이온교환수지(交換樹脂)를 이용한 Ammonium Metavanadate로부터 바나듐 흡탈착(吸脫着) 특성(特性))

  • Jeon, Jong Hyuk;Kim, Young Hun;Hwang, In Sung;Lee, Jin Young;Kim, Joon Soo;Han, Choon
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • Considering considerable contents of vanadium and tungsten in spent SCR DeNOx catalysts, separation and recovery of those metals are required. In this respect, commercial anion exchange resin (MP600) was employed to recover vanadium from the synthetic solution of ammonium metavanadate. Experimental results indicated that vanadium exist as anion under the acidic condition (pH 2 ~ 6) and adsorbed on the resin. Although the adsorption rate was increased with temperature, the maximum amount of adsorption was not affected by temperature. Desorption took place under either strong acidic (less than pH 1) or strong caustic (higher than pH 13) condition. However, desorption seldom took place under moderate conditions (pH 3~11). Furthermore, adsorption equilibrium results agreed well with Freundlich isotherm and pseudo-second-order reactions. And, adsorption energy was evaluated using Dubinin-Radushkevich and Temkin isotherm.

Elution Behavior of Pd(II) - Isonitrosoethylacetoacetate Imine Chelates by Reversed Phase High Performance liquid Chromatography (역상 액체 크로마토그래피에 의한 Pd(II) - Isonitrosoethylacetoacetate Imine 유도체 킬레이트들의 용리 거동)

  • Kim, In-Whan;Shin, Han-Chul;Lee, Man-Ho;Yoon, Tai-Kun;Kang, Chang-Hee;Lee, Won
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.389-399
    • /
    • 1992
  • Liquid Chromatographic behavior of Pd(II) in Isonitrosoethylacetoacetate lmine, $Pd(IEAA-NR)_2$ (R=H, $CH_3$, $C_2H_5$, $n-C_3H_7$, $C_6H_5-CH_2$, $n-C_4H_9$) chelates were investigated by reversed-phase HPLC on Micropak MCH-5 column using methanol/water as mobile phase. The optimum conditions for the separation of $Pd(IEAA-NR)_2$ chelates were examined with respect to the effect of the flow rate, sample solvent, mobile phase strength and column temperature. It wass found that metal chelates were properly eluted in an acceptable range of capacity factor value($0{\leq}log\;k^{\prime}{\leq}1$). The dependence of the logarithm of capacity factor(k') on the volume fraction of water in the binary mobile phase was examined. Also, the dependence of k' on the liquid-liquid extration distribution ratio($D_c$) in methanol-water/n-alkane extration system was investigated. Both kinds of dependence are linear, which susggests that the retention of the electroneutral metal chelate is largely due to the solvophobic effect. Standard adsorption enthalpy changes (${\Delta}H^{\circ}$) and standard adsorption entropy changes (${\Delta}S^{\circ}$) of Pd(II) Isonitrosoethylacetoacetate imine chelates on Micropak MCH-5 column were calculated by measuring capacity factor with changing temperature of the column.

  • PDF

Separation of chlorine in a uranium compound by pyrohydrolysis and steam distillation, and its determination by ion chromatography (열가수분해 및 수증기증류에 의한 우라늄 화합물 중 염소 분리 및 이온크로마토그래피 정량)

  • Kim, Jung-Suk;Lee, Chang-Hun;Park, Soon-Dal;Han, Sun-Ho;Song, Kyu-Seok
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.45-53
    • /
    • 2010
  • For the determination of chlorine in uranium compound, analytical methods by using a steam distillation and a pyrohydrolysis have been developed. The steam distillation apparatus was composed of steam generator, distilling flask and condenser etc. The samples were prepared with an aliquot of LiCl standard solution and a simulated spent nuclear fuel. A sample aliquot was mixed with a solution containing 0.2 M ferrous ammonium sulfate-0.5 M sulfamic acid 3 mL, phosphoric acid 6 mL and sulfuric acid 15 mL. The chloride was then distilled by steam at the temperature of $140^{\circ}C$ until a volume of $90{\pm}5\;mL$ is collected. The pyrohydrolysis equipment was composed of air introduction system, water supply, quartz reaction tube, combustion tube furnace, combustion boat and absorption vessel. The chloride was separated from powdered sample which is added with $U_3O_8$ accelerator, by pyrohydrolysis at the temperature of $950^{\circ}C$ for 1 hour in a quartz tube with a stream of air of 1 mL/min supplied from the water reservoir at $80^{\circ}C$. The chlorides collected in each absorption solution by two methods was diluted to 100 mL and measured with ion chromatography to determine the recovery yield. For the ion chromatographic determination of chlorine in molten salt retained in a metal ingot, the chlorine was separated by means of pyrohydrolysis after air and dry oxidation, and grinding for the sample.

Decomposition of EVA(Ethylene vinyl acetate) used as an adhesion of photovoltaic(PV) module by ultrasonic irradiation in bath-type cleaner (Bath-type 초음파(超音波) 세척기(洗滌器)를 이용(利用)한 태양전지모듈 접착제(接着劑) EVA(Ethylene Vinyl Acetate) 분해특성(分解特性))

  • Kim, Young-Jin;Lee, Jae-Ryeong
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.50-55
    • /
    • 2011
  • Using ultrasonic irradiation, the separation and recovery of PV cell, made of silicon wafer, from PV module was carried out through selective decomposition of EVA used as an interlaminated binder. The ultrasonic cleaner of bath-type (Output: 130 W, Frequency: 40 kHz) was used as an ultrasonic apparatus in this research. With the fixed distance of 2 cm, from ultrasonic generator to PV cell, the experiment of EVA decomposition was performed in various organic solvents such as Toluene, Trichloroethylene, O-dichlorobenzene, Benzene. And also their concentrations and temperature was changed to survey the optimum conditions. However EVA can be decomposed perfectly at $55^{\circ}C$ within 160 min in 5 M of all kinds of solvent, PV cell may be recovered with being damaged or broken severely. This damage may be resulted from the swelling of EVA in the process of decomposition. Whereas, at the condition of 5 M at $65^{\circ}C$, PV cell can be recovered with the state of minor damage or crack. This implies that the decomposition rate of EVA increases with an increase of temperature, thereby EVA can be decomposed before the swelling of EVA layer. Conclusively, it is possible for PV cell to be recovered within 40 min, at $65^{\circ}C$ in 5 M, with less damage.