• Title/Summary/Keyword: Temperature rising

Search Result 667, Processing Time 0.033 seconds

Effects of Heat Treatment on the Micro-structures and the Mechanical Properties of 0.002% Boron-added Low Carbon Steel (0.002% 보론첨가 저탄소강의 미세조직 및 기계적 성질에 미치는 열처리의 영향)

  • Lim, Jong-Ho;Kim, Jong-Sik;Park, Byung-Ho;Lee, Jin-Hyeon;Choi, Jeong-Mook
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.303-308
    • /
    • 2011
  • The effect of heat treatment on the micro-structures and the mechanical properties of 0.002% boron added low carbon steel was investigated. The tensile strength reached the peak at about $880-890^{\circ}C$ with the rising quenching temperature and then the hardness decreased sharply, but the tensile strength hardly decreased. The tensile and yield strength decreased and the total elongation increased with a rising tempering temperature, but the tensile and yield strength sharply fell and the total elongation prominently increased from above a $400-450^{\circ}C$ tempering temperature. Tempered martensite embrittlement (TME) was observed at tempering condition of $350-400^{\circ}C$. In the condition of quenching at $890^{\circ}C$ and tempering at $350^{\circ}C$, the boron precipitates were observed as Fe-C-B and BN together. The hardness decreased in proportion to the tempering temperature untill $350^{\circ}C$ and dropped sharply above $400^{\circ}C$ regardless of the quenching temperature.

A Study on the Optimum Mix Proportion of the Mass Concrete Designed as Massive and Deep Structure

  • Kwon Yeong-Ho;Lee Hwa-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.293-302
    • /
    • 2005
  • This study describes data from determination of the optimum mix proportion and site application of the mass concrete placed in bottom slab and side wall having a large depth and section as main structures of LNG in-ground tank. This concrete requires low heat hydration, excellent balance between workability and consistency because concreting work of LNG in-ground tank is usually classified by under-pumping, adaptation of longer vertical and horizontal pumping line than ordinary pumping condition. For this purpose, low heat Portland cement and lime stone powder as cementitious materials are selected and design factors including unit cement and water content, water-binder ratio, fine aggregate ratio and adiabatic temperature rising are tested in the laboratory and batch plant. As experimental results, the optimum unit cement and water content are selected under $270kg/m^3$ and $l55{\~}l60 kg/m^3$ separately to control adiabatic temperature rising below $30^{\circ}C$ and to improve properties of the fresh and hardened concrete. Also, considering test results of the confined water ratio($\beta$p) and deformable coefficient(Ep), $30\%$ of lime stone powder by cement weight is selected as the optimum replacement ratio. After mix proportions of 5cases are tested and compared the adiabatic temperature rising($Q^{\infty}$, r), tensile and compressive strength, modulus of elasticity, teases satisfied with the required performances are chosen as the optimum mix design proportions of the side wall and bottom slab concrete. $Q^{\infty}$ and r are proved smaller than those of another project. Before application in the site, properties of the fresh concrete and actual mixing time by its ampere load are checked in the batch plant. Based on the results of this study, the optimum mix proportions of the massive concrete are applied successfully to the bottom slab and side wall in LNG in-ground tank.

The Analysis of Temperature Characteristics of a Superconducting Power Supply Due to the Eddy Current (와전류에 의한 초전도 전원장치의 온도특성 해석에 관한 연구)

  • O, Yun-Sang;Bae, Joon-Han;Song, Myung-Kon;Ji, Chang-Sub;Kim, Ho-Min;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.175-177
    • /
    • 1996
  • This paper is studied on the numerical analysis of temperature distribution on the Nb-foil due to the eddy current under operating a superconducting power supply. The increase of rotating speed and magnetic flux above critical magnetic field lead to the temperature rising in the normal spot, the heat was distributed in the region of 30% distance from the center of the normal spot, but the most of the heat was transferred to LHe. Under operation of the sc power supply, the increase of rotation speed has the more influence on the temperature rising than that of magnetic flux. we can conclude that the totaling speed of normal spot is the main design consideration of the sc power supply, and get the optimal value of rotating speed.

  • PDF

Heat Characteristics of Electric Fittings for Power Transmission Line (송배전 접속 금구류의 도전 열특성에 관한 연구)

  • 이창식;진양덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.697-702
    • /
    • 1989
  • This study deals with the heat cycle characteristics of sleeve connector of aluminum stranded conductors steel reinforced(ACSR). In order to investigate the effect of heat cycle on the sleeve connector of stranded conductor, experimental study has been performed for both the temperature rising and electrical resistance of sleeve connector. Also, the effect of changes in surrounding temperature on the allowable current of sleeve connector was studied in order to investigate the influence on the connector size of conductor. Under the given test conditions of heat cycle, the temperature rising s decreased with the increase of sleeve size of conductor. The deviation of resistance of sleeve connector in conductor decreased with the increase in the size of sleeve connector.

Expression of HSP90, HSP70 mRNA and Change of Plasma Cortisol and Glucose During Water Temperature Rising in Freshwater Adapted Black Porgy, Acanthopagrus schlegeli (담수 사육 감성돔, Acanthopagrus schlegeli의 수온 상승에 따른 HSP90, HSP70 mRNA의 발현 및 혈장 cortisol과 glucose 변화)

  • Choi, Cheol-Young;Min, Byung-Hwa;Kim, Na-Na;Cho, Sung-Hwoan;Chang, Young-Jin
    • Journal of Aquaculture
    • /
    • v.19 no.4
    • /
    • pp.315-322
    • /
    • 2006
  • The objective of the present study was to investigate the expression of heat shock protein 90 (HSP90) and 70 (HSP70) mRNA as cellular stress responses, the levels of plasma cortisol with glucose as neuro-endocrine stress responses during water temperature rising in freshwater adapted black porgy, Acanthopagrus schlegeli. A cDNA fragment of 891 (HSP90) and 465 (HSP70) bp was cloned from black porgy testis by Reverse transcription-polymerase chain reaction (RT-PCR) with primers designed from the conserved regions of other teleost. The PCR product of HSP90 showed very high homology to red seabream (99%), rainbow trout (95%), Atlantic salmon (94%), zebrafish (94%) HSP90, HSP70 of black porgy was also highly similar to those of rainbow trout (96%), silver seabream (95%), zebrafish (95%) HSP70. Water temperature rising ($20{\sim}30^{\circ}C$) induced elevation of HSP90 mRNA in black porgy gonad, liver, brain, intestine and kidney, whereas it resulted in an induction of the HSP70 mRNA expression in gonad only. Plasma cortisol levels increased significantly at $30^{\circ}C$ in the fish compared to those at $20^{\circ}C$. Glucose levels of the fish showed a tendency of co-increase with cortisol during water temperature rising. These results suggest that increased HSP90 mRNA in liver with plasma cortisol following heat shock may be related to increasing glucose for homeostasis in this species.

Synthesis of Cyclitol Derivatives (Ⅲ). Electrolytic Oxidation of myo-Inositol (Cyclitol 유도체 합성에 관한 연구 (제3보)-myo-Inositol의 전해 산화-)

  • Joo Hwan Sohn;Chong Woo Nam;Yu Ok Kim
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.127-132
    • /
    • 1971
  • To obtain the various kinds of inosose stereomers, the process of electrochemical oxidation is more effective than chemical oxidation of myo-inositol. So that myo-inositol aqueous solution was electrolyzed by platinum and lead peroxide anode to confirming the occurrence of electrochemical oxidation. The result is that myo-inosose-2 is producing with high yield comparatively by electrolytic oxidation of myo-inositol. Also we studied about the relation between the electrolytic current efficiency and electrolytic temperature and anodic current density. The current efficiency is rising with lowering of electrolytic temperature identically in both anode such as platinum and lead peroxide and also rising with increasing of anodic current density in platinum anode, but inversely in lead peroxide.

  • PDF

A Study on the Thermal and Electrical Characteristics with Manufacture of the Heating Element by Using Carbon with Bar Type (봉상 카본 발열체의 제조와 열 및 전기적 특성에 관한 연구)

  • 배강열;이광성;정한식;정희택;정효민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.430-437
    • /
    • 2004
  • This paper is intended as an investigation of study on the thermal and electrical characteristics of the carbon heating element. In this experimentation, the electric material used is the crystalline graphite a kind of natural graphite. The bentonite is used to solidify the heating element and the vacuum furnace is used for sintering it. It is noted that the natural drying time should be at least 58 hours. The plating of the electric pole with the electroless nickel showed the lowest contact resistance among others. The resistance shows linear variation with regard to length. For the insulation and resolution, the glaze coating is best with 80% of water content. The temperature rising characteristic of the heating element is better than sheath heater saving 43% of rising time. The correlation equation for temperature was obtained with the electric power.

Shape Optimization of DC Solenoid Valve to Minimize the Time of Action Using Response Surface Method (반응표면법을 이용한 최소동작시간을 갖는 DC 솔레노이드 밸브의 형상 최적 설계)

  • Yoon, He-Sung;Hwang, In-Sung;Kim, Dong-Soo;Yun, So-Nam;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.9
    • /
    • pp.449-458
    • /
    • 2006
  • In general, a DC solenoid valve is evaluated by the performances such as the attraction force at maximum and minimum strokes, temperature rising, power consumption and time of action. The importance of each performance may be different according to the specific application purpose. When the temperature rising and power consumption are fixed, however, the performance of DC solenoid valve is usually evaluated by the attraction force at maximum and minimum strokes and time of action. In this paper, the shape of the pole face of plunger and core is optimized to increase the attraction force at maximum stroke, and thereby to minimize the time of action. For the shape optimization, (1+1) evolution strategy is incorporated with the response surface method(RSM) and finite element method(FEM).

A Study on the Bubble Flow in the Gas-Liquid Plume (기-액 기둥에서 기포유동에 관한 연구)

  • Seo, Dong-Pyo;Hong, Myung-Seok;Oh, Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2105-2108
    • /
    • 2003
  • The characteristics of upward bubble flow were experimentally investigated in a liquid bath. In the present study, a thermal-infrared camera and high speed CCO camera were used to measure their temperature and local rising velocity, respectively. Heat transfer from bubble surface to water is largely completed within z=10mm from the nozzle, and then the temperature of bubble surface reaches that of water rapidly. The rising velocity of bubble was calculated for two different experimental conditions: 1) bubble flow without kinetic energy 2) with kinetic energy. Bubble flow without kinetic energy starts to undergo the effect of inertia force 10cm away from the nozzle. Whereas, kinetic energy is dominant before 30 cm away from the nozzle in bubble flow, but after this point, kinetic energy and inertial force are applied on bubble flow at the same time.

  • PDF

The Study on Long-Terms Properties of Concrete Using C Class Fly Ash (C급 플라이애쉬 콘크리트의 장기특성에 관한 연구)

  • Lee, Sang-Soo;Won, Cheol;Kwon, Yeong-Ho;Ahn, Jae-Hyen;Park, Chil-Lim
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.141-145
    • /
    • 1996
  • The primary purpose of this study is to investigate reusal techniques of by-product produced the combined heat power plant in the construction field, which may contribute to the savings of construction materials and the conservation of enviornment. This study is compared and evaluated by testing the chemical resistance, adiabatic temperature rising test, creep and drying shrinkage. As the result of the study, the following conclusions are derived : (1) hydration heat of the fly ash concrete is less than the plain concrete in adiabatic temperature rising test, (2) the fly axh concrete (FA 30%) is similar to the plain concrete in the chemical resistamce, (3) the fly ash concrete (FA 10, 30%) is similar to the plain concrete in drying shrinkage, but the fly ash concrete (FA 50%) is highly increased, (4) the fly ash concrete (FA 30%) is less than the plain concrete in creep test.

  • PDF