• 제목/요약/키워드: Temperature prediction

검색결과 2,696건 처리시간 0.027초

기계학습법을 이용한 동해 남서부해역의 표층 이산화탄소분압(fCO2) 추정 (Estimation of Surface fCO2 in the Southwest East Sea using Machine Learning Techniques)

  • 함도식;박소예나;최상화;강동진;노태근;이동섭
    • 한국해양학회지:바다
    • /
    • 제24권3호
    • /
    • pp.375-388
    • /
    • 2019
  • 지구의 탄소순환을 이해하고 미래 대기 $CO_2$의 농도와 기후 변화를 예측하기 위해서는 해양과 대기 사이 $CO_2$ 교환율(sea-to-air $CO_2$ flux)의 시공간 변화를 정확하게 추정하는 것이 필요하다. 연구선을 이용한 현장 관측이 갖고 있는 시공간 제약으로 인해 동해에는 매우 제한적인 표층 이산화탄소분압($fCO_2$) 자료만 존재한다. 이 연구에서는 위성 및 수치모형에서 얻은 수온, 염분, 엽록소, 혼합층 자료를 세 종류의 기계학습 모형에 입력하여 동해 남서부해역의 고해상도 표층 $fCO_2$ 시계열 자료를 산출하였다. 세 모형 중 현장 관측 자료를 가장 잘 재현하는 Random Forest (RF) 모형의 평균제곱근오차는 $7.1{\mu}atm$이었다. RF 모형을 이용한 $fCO_2$ 예측에 중요한 역할을 하는 변수는 수온, 염분과 시간 정보였으며, 엽록소와 혼합층 깊이는 $fCO_2$ 예측에 미미한 역할을 하였다. RF 모형에서 예측한 표층 $fCO_2$를 이용하여 계산한 동해 남서부해역의 $CO_2$ 교환율은 $-0.76{\pm}1.15mol\;m^{-2}yr^{-1}$로 이전 현장 관측 연구에서 제시한 교환율( $-0.66{\sim}-2.47mol\;m^{-2}yr^{-1}$) 범위 중 작은 값에 해당한다. RF 모형의 표층 $fCO_2$ 시계열 자료는 1주일 내외의 짧은 시간 사이에도 $CO_2$ 교환율이 상당히 변할 수 있음을 보여주었다. 앞으로 보다 정확한 $CO_2$ 교환율 산출을 위해서는 $fCO_2$가 급격하게 변화하는 봄철에 높은 해상도의 현장 관측을 수행할 필요가 있다.

일메나이트광의 유동층 염화반응에 대한 수치적 예측 (Numerical Prediction for Fluidized Bed Chlorination Reaction of Ilmenite Ore)

  • 정동규;정은진;이미선;김진영;송덕용
    • 청정기술
    • /
    • 제25권2호
    • /
    • pp.107-113
    • /
    • 2019
  • 2단 유동층 염화로에서 일메나이트광의 선택염화반응과 이산화티탄의 탄소염화반응의 염화도를 예측하기 위해서 shrinking core 모델과 유출률 및 입자파손을 고려한 수치 모델을 개발하였다. 입자분포를 고려하여 입자별 물질 수지와 염화반응을 반영할 수 있는 유동층 염화 반응 해석이 가능하다. 유동층 염화로의 실험값과 비교하여 약 6% 오차율의 정확성을 보였다. 입자 크기에 따라서는 입자 크기가 작을수록 염화도의 변화가 더 크게 나타났으며 염화도 1의 값에 도달하는 반응시간 차이가 약 100 min 정도로 나타났다. 온도의 변화($800{\sim}1000^{\circ}C$)에 대한 염화도의 변화는 염화도 0.9에 도달하는 반응시간이 약 10 min 차이로 크게 나타나지 않았다. 1단계 선택염화공정에서 일메나이트광의 질량감소율은 180 min 경과 시에 이론값인 0.4735 값에 근접하고, Fe 성분의 염화도는 $FeCl_2$ 또는 $FeCl_3$로 변환되어 180 min 경과 시에는 거의 1의 값을 보인다. 2단계 탄소염화공정에서 $TiO_2$의 염화도는 180 min 경과 시 0.98에 근접하고, 질량분율은 0.02에 도달하여 $TiCl_4$로 변환되는 것으로 나타났다. 1단계 선택염화공정에서 $TiO_2$는 180 min 경과 시에 98%까지 생성되었다가 연속적인 2단계 탄소염화공정에서 추가로 90 min 경과 시(총 경과 시간 270 min)에 99% $TiCl_4$로 전환되는 것으로 나타나고, 질량감소율도 99% 이상 감소하였다.

지형에 따른 강원지역의 강설입자 크기 분포 특성 분석 (Characteristics Analysis of Snow Particle Size Distribution in Gangwon Region according to Topography)

  • 방원배;김권일;염대진;조수정;이청룡;이대형;예보영;이규원
    • 한국지구과학회지
    • /
    • 제40권3호
    • /
    • pp.227-239
    • /
    • 2019
  • 강원지역은 우리나라의 다설지로서 복잡한 지형 때문에 강설량의 공간변동성이 크다. 특히 동풍조건에서 강설이 발생할 시 강설량의 공간적 변동을 예측하기 어렵다. 동풍조건에서는 강원지역 내 위치에 따라 대기환경조건이 다르며 이는 강설의 특성에도 영향을 줄 수 있다. 본 연구에서는 동풍 조건에서 태백산맥의 풍상측과 풍하측에서 강설의 미세물리적 특성을 서로 비교 분석하였다. 강원지역 내 4개 관측지점을 선정하여 파시벨 수적계로 입자크기분포를 관측하였다. 얻어진 강설입자 크기 분포의 특성을 풍상측과 풍하측간 비교한 결과, 풍상측의 강설입자 크기 분포는 풍하측에 비해 넓은 분포를 가졌고 작은 강설입자의 수도 많았다. 강설입자의 수농도에 비례하는 보편특성수농도와 강설입자의 직경에 비례하는 보편특성직경 둘 다 풍상측에서 상대적으로 큰 값을 보였다. 또한, 얼음수함량과 강설강도 비교에서도 풍상측 지점에서 큰 평균값을 가졌다. 이 결과가 나타난 원인은 태백산맥 산사면에서 공기덩어리의 강제적 상승효과로 풍상측 지점 상공에 새로운 강설입자의 생성이 활발했기 때문으로 추정된다. 또한, 풍상측은 따뜻하고 습한 동풍이 불어오므로 이로 인해 지상기온이 $0^{\circ}C$ 근처에 머무르며 강한 부착과정이 일어나기 좋은 조건이다.

PNU CGCM-WRF Chain을 이용한 우리나라 콩의 고온해 및 저온해에 대한 예측성 검증 (Evaluating the Predictability of Heat and Cold Damages of Soybean in South Korea using PNU CGCM -WRF Chain)

  • 최명주;안중배;김영현;정민경;심교문;허지나;조세라
    • 한국농림기상학회지
    • /
    • 제24권4호
    • /
    • pp.218-233
    • /
    • 2022
  • 본 연구에서는 Pusan National University Coupled General Circulation Model-Weather Research and Forecasting (PNU CGCM-WRF)에서 생산된 hindcast 자료(1986~2020)를 이용하여 우리나라의 주요 곡물 중 하나인 콩의 생육단계별 고온해 및 저온해 발생일수의 예측성을 평가하였다. 예측성을 평가하는 방법으로는 Normalized Standard Deviations (NSD), Root Mean Square Error (RMSE), Hit Rate (HR), Heidke Skill Score (HSS)이다. 이를 위해 먼저 콩의 고온해 및 저온해를 정의하는 변수인 일 최고기온(Tmax) 및 일 최저기온(Tmin)의 모의성능을 검증하였다. 그 결과 1~5월(01RUN~05RUN)의 초기조건을 가지고 시작하는 월에 따라 다소 차이가 있지만, Variance Scaling 방법을 적용하여 보정한 결과가 보정전보다 관측과 유사하게 나타났으며, 보정한 3~10월의 Tmax 및 Tmin에 대한 모의성능은 전반적으로 01RUN~05RUN에 Simple Composite Method (SCM)을 적용하여 평균한 결과(ENS)에서 높게 나타났다. 또한, 콩의 생육시기별 고온해 및 저온해 발생일수의 지역적 패턴과 특성을 관측과 비교하였을 때 모형이 잘 모의하고 있다. ENS에서 콩의 고온해(저온해)에 대한 HR과 HSS는 생육시기 별로 0.45~0.75, 0.02~0.10(0.49~0.76, -0.04~0.11)의 범위를 가진다. 결론적으로, PNU CGCM-WRF chain의 01RUN~05RUN 및 ENS는 우리나라 콩의 생육시기별 고온해 및 저온해를 예측할 수 있는 성능을 가지고 있다.

PNU/CME CGCM을 이용한 엘니뇨/라니냐 장기 예측성 연구 (Long-term Predictability for El Nino/La Nina using PNU/CME CGCM)

  • 정혜인;안중배
    • 한국해양학회지:바다
    • /
    • 제12권3호
    • /
    • pp.170-177
    • /
    • 2007
  • 본 연구에서는 기상청 연구개발 사업을 통해 개발된 PNU/CME 접합대순환 모형(CGCM)을 이용하여 적도 태평양에서의 엘니뇨 및 라니냐 현상에 대한 장기 예측성을 해수면온도 상관관계와 숙련도를 통해 살펴보았다. 이를 위하여 PNU/CME CGCM을 활용한 전구규모의 기후 예측을 위하여 1979년부터 2004년까지 매해 1월, 4월, 7월, 10월초를 초기조건으로 하여 12개월 후보 적분을 수행했다(각 적분은 APR RUN, JUL RUN, OCT RUN, JAN RUN 이라 명명한다). 또한 각 12개월 후보 적분은 5개의 앙상블로 구성되었다. 4계절로부터 출발한 모든 적분에서 12개월의 리드가 지난 이후에도 상대적으로 높은 상관이 적도 태평양에서 유지되었다. 특히, 본 연구에서 사용된 모형의 적도 해수면온도 아노말리 예측성은 6개월의 리드까지 뛰어나다는 것을 알 수 있었다. 엘니뇨와 라니냐에 대한 예측성을 평가하기 위해서 Hit rate와 False alarm rate 등의 다양한 숙련도를 구해본 결과, PNU/CME CGCM은 적도 태평양 지역에서의 온난 아노말리와 한랭 아노말리를 예측하는데 있어서는 좋은 예측성을 보였다. 그러나 보통 상태에 대한 예측성은 상대적으로 다소 낮았다. 또한 본 연구에 사용한 모형 결과를 DEMETER 사업에 참여하고 있는 다른 접합대순환 모형들의 예측성과도 비교해 보았을 때, 본 연구에 사용한 모형은 DEMETER 사업에 참여한 모형들에 견줄 수 있는 장기 예측 능력을 갖고 있음을 알 수 있었다. 결론적으로 Nino3.4 지역의 해수면온도 아노말리를 예측할 수 있는 능력을 통해서 살펴볼 때 PNU/CME CGCM은 엘니뇨 및 라니냐 해에 대해서는 6개월까지는 높은 예측성이 있다고 판단되며 최장 12개월 정도의 장기 예측 능력이 있다는 결론을 얻었다.

지역 특성을 고려한 무더위쉼터의 입지특성 분석 및 평가 모델 개발 (Development of a Model for Analylzing and Evaluating the Suitability of Locations for Cooling Center Considering Local Characteristics)

  • 류지은;부찬종;이경일;조경두
    • 환경영향평가
    • /
    • 제33권4호
    • /
    • pp.143-154
    • /
    • 2024
  • 기후변화로 인한 폭염은 취약계층의 건강 피해를 급격히 증가시키고 있으며, 이를 예방하기 위하여 국가, 광역, 기초지자체는 기후위기 적응대책을 수립하고 있다. 폭염 피해를 줄이기 위한 대표적인 기후위기 적응대책은 무더위쉼터 개소 수 확대이다. 단기간에 효과가 높아 전라북도를 제외한 대부분의 광역지자체에서는 해당 사업을 적응대책으로 포함하고 있다. 하지만 예산 및 비예산 등에 따라 무더위쉼터로서 선정 기준이 달라 무더위쉼터의 이용률 및 효과가 모두 다르다. 따라서 본 연구에서는 지자체에서 적응대책 이행을 위해 무더위쉼터 확장 시 가능성이 높은 지역을 예측 및 평가할 수 있는 로지스틱 회귀분석 모델을 개발하였다. 원도심과 신도시의 공존 등으로 다양한 폭염 취약 환경으로 구성된 인천광역시를 대상으로 사회·경제적·환경적 차이를 고려하여 강화·옹진군과 이외의 지역으로 구분하여 무더위쉼터 가능 지역을 예측하는 로지스틱 모델을 개발하였다. 연구 결과, 강화·옹진군 지역의 통계 모델에서는 지표면 온도가 높을수록, 65세 이상 고령자수가 많을수록 무더위쉼터 가능성이 높은 것으로 나타났으며, 약 80.93%의 예측 정확도를 나타냈다. 강화·옹진군 이외의 지역에 대해서는 지표면온도가 높을수록, 65세 이상 고령자 수가 많을수록, 30년 이상인 노후 주택으로부터의 거리가 가까울수록, 공공시설로부터의 거리가 가까울수록 무더위쉼터 가능성이 높은 것으로 나타났으며, 약 89.08%의 예측 정확도로 나타났다. 개발된 로지스틱 회귀모형은 지역의 특성을 고려하여 무더위쉼터로서 가능성이 높은 지역을 예측 및 평가할 수 있으며, 추후 무더위쉼터 추가 지정 시 우선순위 선정 및 관리에 활용할 수 있을 것으로 기대한다.