• 제목/요약/키워드: Temperature of coefficient of resistance

검색결과 537건 처리시간 0.031초

액장 소결한 $\beta-SiC-TiB_2$계 전도성 복합체의 특성 (The Properties of $\beta-SiC-TiB_2$ Electroconductive Ceramic Composites Densified by Liquid-Phase Sintering)

  • 임승혁;신용덕;송준태
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권9호
    • /
    • pp.510-515
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta-SiC-TiB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of Al_2O_3+Y_2O_34. The result of phase analysis of composites by XRD revealed $\alpha-SIC(6H)\;TiB_2,\; and YAG(Al5Y3O12) crystal phase. The relative density and the mechanical properties of composites were increased with increasing $Al_2O_3+Y_2O_34 contents because YAG of reaction between $Al_2O_3\; and\; Y_2O_3$ was increased. The Flexural strength showed the highest value of 432.5MPa for composites added with 12wt% $Al_2O_3+Y_2O_34 additives at room temperature. Owing to crack deflection crack bridging phase transition and TAG of fracture toughness mechanism the fracture toughness showed 7.1MPa.m1/2 for composites added with 12wt% $Al_2O_3+Y_2O_34 additives at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest of $6.0\times10-4\Omega.cm\; and\; 3.1\times10-3/^{\circ}C4 respectively for composite added with 12wt% \Omega additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance (PTCR) in the temperature range of $25^{\circ}C\; to\; 700^{\circ}C$.

  • PDF

PEI가 코팅된 CVD 그래핀의 저항 온도 계수 측정 (Measurements of the Temperature Coefficient of Resistance of CVD-Grown Graphene Coated with PEI)

  • 임수묵;석지원
    • Composites Research
    • /
    • 제36권5호
    • /
    • pp.342-348
    • /
    • 2023
  • 최근 웨어러블 소자를 이용한 신체와 주변 온도의 실시간 모니터링에 대한 수요가 급격히 증가하고 있다. 그래핀 기반 써미스터가 고성능 유연 온도 센서로 개발되어 왔다. 본 연구에서는 단일층 그래핀의 온도 측정 성능을 개선하기 위하여 표면에 polyethylenimine(PEI)를 코팅하여 저항 온도 계수(TCR)를 조절하였다. 화학기상증착법(CVD)에 의해 합성한 단일층 그래핀은 습식 전사 공정을 통해 원하는 기판에 전사되었다. PEI에 의한 계면 도핑을 유도하기 위하여, 소수성의 그래핀 표면을 산소 플라즈마 처리를 통해 결함을 최소화하면서 친수성으로 제어하였다. PEI 도핑 효과를 전계효과트랜지스터(FET)를 이용하여 확인하였다. PEI 도핑에 의해서 CVD 그래핀의 TCR 값이 30~50℃의 온도 범위에서 -0.49(±0.03)%/K로 향상된 것을 확인하였다.

$V_2O_5/V/V_2O_5$ 다층박막 및 MEMS기술을 이용한 비냉각형 적외선 감지 소자의 제작 ($V_2O_5/V/V_2O_5$ based uncooled infrared detector by MEMS technology)

  • Han, Yong-Hee;Hur, Jae-Sung;Park, In-Hoon;Kim, Kun-Tae;Chi-Anh;Shin, Hyun-Joon;Sung Moon
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.131-131
    • /
    • 2003
  • Surface micromachined uncooled IR detector with the optimized VOx bolometric layer was fabricated based on sandwich structure of the V$_2$O$_{5}$V/V$_2$O$_{5}$. In order to improve the detectivity of the IR detector, we optimized a few factors in the viewpoint of bolometric material. Vanadium oxide thin film is a promising material for uncooled microbolometers due to its high temperature coefficient of resistance at room temperature. It is, however, very difficult to deposit vanadium oxide thin films having high temperature coefficient of resistance and low resistance because of process limits in microbolometer fabrication. In order to increase the responsivity and decrease noise, we increase TCR of bolometric material and decrease room temperature resistance based on the sandwich structure of the V$_2$O$_{5}$V/V$_2$O$_{5}$ by conventional sputter. By oxygen diffusion through low temperature annealing of V$_2$O$_{5}$V/V$_2$O$_{5}$ in oxygen ambient, various mixed phase vanadium oxide was formed and we obtained TCR in range of-1.2 ~-2.6%/$^{\circ}C$ at room temperature resistance of 5~100k$\Omega$.mega$.

  • PDF

분쇄 방법 및 하소온도에 따른 Doner-doped BaTiO3의 전기적 특성 (Electrical Properties of Donor-doped BaTiO3 Ceramics by Attrition Milling and Calcination Temperature)

  • 이정철;명성재;전명표;조정호;김병익;신동욱
    • 한국전기전자재료학회논문지
    • /
    • 제21권3호
    • /
    • pp.217-221
    • /
    • 2008
  • In this study, We have been investigated the effect of calcination temperature and high-energy ball-milling of powder influences the $BaTiO_3$-based PTCR(Positive Temperature coefficient Resistance) characteristics and microstructure. The mixed powder was obtained from $BaCO_3$, $TiO_2$, $CeO_2$ ball-milled in attrition mill. The mixed powder was calcine from 1000 $^{\circ}C$ to 1200 $^{\circ}C$ in air and then it was sintered in reduction- re-oxidation atmosphere. As a result, The room-temperature electrical resistivity decreased and increased with increasing calcination temperature. specially, Attrition milled powder could have low room-temperature resistivity and high PTC jump order at 1100 $^{\circ}C$. attrition milling had lower room-temperature resistivity than ball milling. Particle size decreased by Attrition milling of powder influences in calcination temperature and room-temperature resistivity.

$Al_2O_3+Y_2O_3 첨가량에 따른 {\beta}-SiC-ZrB_2$계 전도성 복합체의 특성 (The Properties of $\beta-SiC-ZrB_2$ Electroconductive Ceramic Composites with $Al_2O_3+Y_2O_3$Contents)

  • 신용덕;주진영;황철
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권9호
    • /
    • pp.516-522
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta-SiC-ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of$Al_2O_3+Y_2O_3$ Phase analysis of composites by XRD revealed $\alpha-SiC(6H) ZrB_2\; and YAG(Al_5Y_3O_{12})$ The relative density of composites were increased with increased Al2O3+Y2O3 contents. The Flexural strength showed the highest value of 390.6MPa for composites added with 20wt% Al2O3+Y2O3 additives at room temperature. Owing to crack deflection crack bridging phase transition and YAG of fracture toughness mechanism the fracture toughness showed the highest value of 6.3MPa.m1/2 for composites added with 24wt% Al2O3+Y2O3 additives at room temperature. The resistance temperature coefficient showed the value of$ 2.46\times10^{-3}\;, 2.47\times10^{-3},\; 2.52\times10^{-3}/^{\circ}C$ for composite added with 16, 20, 24wt% Al2O3+Y2O3 additives respectively. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $256{\circ}C\; to\; 900^{\circ}C$.

  • PDF

$\beta-SiC+39vol.%TiB_2$ 복합체의 전기저항률 (Electrical Resistivity of the $\beta-SiC+39vol.%TiB_2$ Composites)

  • 박미림;황철;신용덕;이동윤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 연구회
    • /
    • pp.15-18
    • /
    • 2001
  • The composites were fabricated 61 vol% $\beta$-SiC and $39vol%TiB_2$ powders with the liquid forming additives of 8, 12, 16wt% $Al_2O_3+Y_2O_3$ by hot pressing at $1730^{\circ}C$ and subsequent pressed annealing and pressureless annealing at $1750^{\circ}C$ for 4 hours to form YAG. The result of phase analysis of composites by XRD revealed $\alpha$-SiC(6H), $TiB_2$, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density of composites were increased with increasing $Al_2O_3+Y_2O_3$ contents. The fracture toughness showed the highest value of $7.77MPa{\cdot}m^{1/2}$ for composites added with 12wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest of $7.3{\times}10^{-4}{\Omega}{\cdot}cm$ and $3.8{\times}10^{-3}/^{\circ}C$, respectively, for composite added with 12wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

전기화학적 노이즈 저항 측정에서의 불확도 평가 (Uncertainty evaluation in electrochemical noise resistance measurement)

  • 김종집;강수연
    • Corrosion Science and Technology
    • /
    • 제12권5호
    • /
    • pp.220-226
    • /
    • 2013
  • The uncertainty in statistical noise resistance measurement was evaluated for a type 316 stainless steel in NaCl solutions at room temperature. Sensitivity coefficients were determined for measurands or variables such as NaCl concentration, pH, solution temperature, surface roughness, inert gas flow rate and bias potential amplitude. The coefficients were larger for the variables such as NaCl concentration, pH, inert gas flow rate and solution temperature, and they were the major factors increasing the combined standard uncertainty of noise resistance. However, the contribution to the uncertainty in noise resistance measurement from the above variables was remarkably low compared to that from repeated measurements of noise resistance, and thus, it is difficult to lower the uncertainty in noise resistance measurement significantly by lowering the uncertainties related with NaCl concentration, pH, inert gas flow rate and solution temperature. In addition, the uncertainty in noise resistance measurement was high amounting to 17.3 % of the mean, indicating that the reliability in measurement of noise resistance is low.

초고온용 다결정 3C-SiC 마이크로 압력센서의 제작 (Fabrication of polycrystalline 3C-SiC micro pressure sensors for hightemperature applications)

  • 정귀상
    • 센서학회지
    • /
    • 제19권1호
    • /
    • pp.31-35
    • /
    • 2010
  • High temperature micro pressure sensors were fabricated by using polycrystalline 3C-SiC piezoresistors grown on oxidized SOI substrates by APCVD. These have been made by bulk micromachining under $1{\times}1mm^2$ diaphragm and Si membrane thickness of $20{\mu}m$. The pressure sensitivity of implemented pressure sensors was 0.1 mV/$V{\cdot}bar$. The nonlinearity and the hysteresis of sensors were ${\pm}0.44%{\cdot}FS$ and $0.61%{\cdot}FS$. In the temperature range of $25^{\circ}C{\sim}400^{\circ}C$ with 5 bar FS, TCS (temperature coefficient of sensitivity), TCR (temperature coefficient of resistance), and TCGF (temperature coefficient of gauge factor) of the sensor were -1867 ppm/$^{\circ}C$, -792 ppm/$^{\circ}C$, and -1042 ppm/$^{\circ}C$, respectively.

POCl$_{3}$ 도핑 및 비소 이온주입공정으로 제작한 높은 안정성을 갖는 다결정실리콘 저항소자 특성 (Characteristics of Polysilicon Resistors with High Thermal Stability Fabricated by POCl$_{3}$ Doping and Arsenic Implantation)

  • 이대우;노태문;구진근;남기수
    • 전자공학회논문지D
    • /
    • 제35D권7호
    • /
    • pp.56-62
    • /
    • 1998
  • Polysilicon resistors with high thermal stability have been fabricated by a new mixed process using POCl$_{3}$ doping and arsenic implantation. Varous temeprature coefficients, which range form 510 ppm/.deg. C to -302 ppm/.deg. C, were shown from the fabricated polysilicon resistors with sheet resistance of 58~107 .ohm./sq in the operating temeprature of 27~150.deg. C. The temperature coefficient of the polysilicon resistor by the mixed technology was about 4.3 times as low compared to the conventional polysilicon resistor using POCl$_{3}$ doped single process with the same sheet resistance of 75.ohm./sq. In addition, the mixed technology can be applied to obtain nearly zero temperature coefficient for polysilicon resistors which are reliable and insensitive to temperature.

  • PDF

$BaTiO_{3}$계 PTC 서미스터의 특성에 관한 연구 (A Study on the Characterstics of the $BaTiO_{3}$ PTC Thermistor)

  • 박정철;추순남;이능헌;소대화
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 기술교육전문연구회
    • /
    • pp.66-70
    • /
    • 2003
  • This dissertation is about the development of $BaTiO_{3}$-type PTC(Positive Temperature Coefficient) thermistor by composition method. PTC samples were fabricated after setting the experimental composition equation as $(Ba_{0.95-x}Sr_{0.05}Ca_x)TiO_3\;-\;0.01TiO_2\;-\;0.01SiO_2\;-\;aMnCO_3\;-\;0.2Nb_{2}O_{5}$ and their testing results were analyzed. a PTC thermistor, having the characteristics of relatively low resistance at room temperature and c and a good temperature coefficient, has been developed.

  • PDF