• Title/Summary/Keyword: Temperature in shoes

Search Result 37, Processing Time 0.018 seconds

A study of Agricultural fatigue shoes - A comparative study of heat load by shoe type - (농작업화에 관한 연구 - 신발종류에 따른 열적 부담 비교연구 -)

  • 이경숙;최정화
    • Korean Journal of Rural Living Science
    • /
    • v.7 no.2
    • /
    • pp.99-108
    • /
    • 1996
  • This study has intended to suggest fundamental data to develope and choose appropriate shoes for upland farming in order to prevent health deterioration of women workers and improve work effectiveness and reduce fatigue by wearing appropriate shoes. During 1995. 4. 28 - 5. 10, Fifty women workers in hot pepper farming were observed and major shoe types, which were rubber shoes, walking shoes, slippers, and rubber boots, were selected for the study. During 1995. 10. 9 - 31, two subjects were tested by wearing those shoes in the laboratory where the temperature was 24$\pm$1$^{\circ}C$ and relative humidity 50$\pm$5%RH. And the temperature & humidity on sole and in the shoes, the rectal temperature, skin temperature, blood pressure, pulse, lactate concentration of blood, Flickers' value and subjective sensation were measured. The results were as follows : 1. 84% of women workers mentioned that they need shoes improvement and the order of most frequent shoe types to be worn was rubber shoes, walking shoes, slippers, rubber boots. 2. The rate of women who were unsatisfied with shoes for upland farming is 38 percentages. The reason of unsatisfaction was that feet were in a sweat and alien substances were let into shoes. 3. The temperature & humidity on sole were the lowest in rubber boots during experiment(p<0.01). 4. The relative humidity in the shoes was the highest in rubber boots by 90% and the lowest in walking shoes by 72% during rest And the humidity in slippers and walking shoes were significantly low in experiment(p<0.001). 5. Rubber boots showed the highest rise in rectal temperature by 0.2$^{\circ}C$ showing increase of core temperature (p<0.05). 6. The mean skin temperature during experiment was highest in rubber boots by 33.8$^{\circ}C$(p<0.001).

  • PDF

The Wearing Sense of Male Adult Shoes - Comparison of Common Shoes with Elevated Shoes -

  • Shim, Boo-Ja;Yoo, Hyun
    • Journal of Fashion Business
    • /
    • v.11 no.6
    • /
    • pp.35-51
    • /
    • 2007
  • This research was administered in order to know the effects of heels on the foot by comparing the foot environmental characteristics when common shoes and elevated shoes are worn. First, 157 male adults in their 20s through 40s living in Busan were the inquiry subjects to reveal the shoes-wearing reality of adult males. Second, 7 male adults in their early 20s became the subjects for the experiments of wearing common shoes and elevated shoes. 1. Inquiry Results of Shoes-Wearing Reality Common-shoes wearers were in the order: 20s (43.9%) > 30s (24.8%) > 40s (8.3%). Elevated-shoes wearers were mostly 20s (12.1%), followed by 30s (8.3%) and 40s (2.5%). Among the wearing effects of elevated shoes were 'looking taller' (66.7%), 'no height complex & more confidence' (30.6%), and 'higher work efficiency' (2.8%). In sum, 97.3% of the male subjects believed in great positive effects by wearing elevated shoes. 2. Shoes-Wearing Experiment Results In foot skin temperature, significant differences between the two groups were admitted in outer foot a (p<0.05) and other areas (p<0.001), except in the instep. Elevated-shoes group had bigger skin temperature, while the order of temperature was the instep, the big toe, inner foot a/b/c and outer foot a/b/c. Significant difference was accepted in total sweat rate (p<0.05) and local sweat rate (p<0.01). Elevated-shoes group appeared higher in both rates. Significant difference (p<0.001) between the two groups was recognized in fatigue degrees after wearing, whereas significance (p<0.05) in elevated-shoes group was approved in fatigue before and after exercise. So elevated-shoes group experienced more fatigue, especially after exercise.

Effects of Walking with Non-Electric Power Vibration Shoes on Body Temperature and Peripheral Circulation (무전력형 진동신발 보행이 체온과 말초 혈액순환에 미치는 영향)

  • Lee, Hyun Ju;Lee, Cheong Gn;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.235-241
    • /
    • 2019
  • The purpose of this study was to investigate the effect of the body temperature peripheral circulation with vibration shoes in healthy 10 adults. The magnetic vibration device with non-electric power was mounted in the midsole of the vibration shoes. The experiment was divided into two groups: vibration shoes and no vibration shoes. Subjects were randomly selected and measured body surface temperature by digital infrared thermal imaging (DITI) and non-invasive capillaries change by nailfold microscope (NFM). After walking in a treadmill for 15 minutes at 4.0 km/h speed wearing normal shoes or vibration shoes, DITI and NFM were measured. The walking with vibration shoes showed the body surface temperature shift from the proximal to the distal. In addition, the diameter of the nailfold capillary in the vibration shoes group was thicker and clearer due to the increased blood flow than that of the no vibration shoes group. The vibration shoes are easy to apply to anyone who can walk because it can give vibration stimulation by walking without additional time, cost, and effort in daily life. Further studies are needed to explain the physiological effects of vibration frequency and intensity on the long-term perspective of target subjects resulting from vascular dysfunction.

Effects of Shoe Sizes on the Inner Environment of Shoes (신발사이즈가 신발 내적환경(內的環境)에 미치는 영향(影響))

  • Yoo, Hyun;Shim, Boo-Ja
    • Journal of Fashion Business
    • /
    • v.6 no.4
    • /
    • pp.151-162
    • /
    • 2002
  • This study aims to reveal the effects of shoe size room on the inner environment of shoes by examining the changes of footskin temperature, temperature and humidity of the shoes, and psychological responses. The following conclusions were made: 1. Skin temperature had significant differences according to shoe sizes in the inner foot parts (right/left) and the outer foot part (left). As time went, skin temperature was distributed as follows: Type A > Type C > Type B. 2. Skin temperature appeared in the following order: instep > inner foot > outer foot. 3. The temperature within the shoes had significant differences: Type A > Type C > Type B. But no significance was recognized in the humidity within the shoes: Type B > Type C > Type A. 4. Some significance was noticed in the psychological responses of size fitness and comfortableness. In size fitness, Type B was responded to be fitting, Type A little small, and Type C rather big. Moisture had similar changes according to three shoe sizes, but humid was the response as time went. Comfortableness appeared in the order of Type C > Type B > Type A.

Measurement of Kager's Triangle Area and Retrocalcaneal Surface Temperature by shoes heel height (신발 굽 높이에 따른 Kager씨 삼각의 면적과 후종족부의 표면온도 측정)

  • Jeon, Byeongkyou;Yeo, Jindong;Shin, Jungsub
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.521-529
    • /
    • 2012
  • The aim of this study was to analyze radiological change of Kager's triangle area and retrocalcaneal surface temperature by shoes heel height. Area of Kager's triangle was measured by simple radiography study And PACS of INFINITI. Retrocalcaneal surface temperature were measured by DITI. Area of Kager's triangle and retrocalcaneal surface temperature were calculated for comparison and analysis, with flat shoes and high heel shoes. Area of Kager's triangle($0.88cm^2$) and retrocalcaneal surface temperature ($1.4^{\circ}C$)tends to decrease with high heel shoes. The highest and shortest of the Kager's triangle area and a surface temperature difference between flat shoes and high heel shoes, each $0.9cm^2$, $1.2cm^2$, $1.6^{\circ}C$, $0.5^{\circ}C$ and showed slight differences. The highest weight and the lowest weight of a surface area and the temperature difference between flat shoes and high heels, each $1.8cm^2$, $0.8cm^2$, $1.1^{\circ}C$, $0.2^{\circ}C$ and higher weight Kager's area and the surface temperature is decreased. The longest time and shortest time of a surface area and the temperature difference between high heels, each $0.8cm^2$, $1.4^{\circ}C$. In conclusion, Areas of Kager's triangle and retrocalcaneal surface temperature decrease with high heel shoes. If we wear high heel shoes for a long time, retrocalcaneal pain and blood flow disorder will occurs.

The Effect of Functional Shoes (Coolfin) on Top of Foot and Great Toe Blood Circulation (기능성 신발 쿨핀(Coolfin) 착용이 발등 및 엄지발가락 혈액순환에 미치는 영향)

  • Kim, Yun-Jin;Lee, Dong-Ryul;Sang, Hie-Sun;Lee, Mi-Nam;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.4
    • /
    • pp.220-225
    • /
    • 2014
  • Purpose: This study aims to investigate the impact of a short walk putting on Coolfin shoes on the foot temperature rise and blood circulation. Methods: Twenty healthy adults participated in experiments in this study. All subjects walked respectively barefoot and putting on Coolfin shoes. Infrared imaging cameras were used to collect and analyze the data on the foot temperature. Results: As a result of this study, there were significant differences between the temperatures of the great toe and top of the foot after 20-minute walks with bare feet and in Coolfin shoes. Both the temperatures of the great toe and top of the foot decreased after a 20-minute walk in the barefoot condition, and there was a significant difference between them (p<0.05). Both the temperatures of the great toe and top of the foot increased after a 20-minute walk in the condition of putting on Coolfin shoes, and there was a significant difference between them(p<0.05). Conclusion: A short walk putting on Coolfin products induces the movement of the toes to increase the blood flow and accordingly, has a direct impact on the increase of the surface temperature of the feet, so they are effective products for helping blood circulation in the feet.

Evaluation of Defects in the Bonded Area of Shoes using an Infrared Thermal Vision Camera

  • Kim, Jae-Yeol;Yang, Dong-Jo;Kim, Chang-Hyun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.511-514
    • /
    • 2003
  • The Infrared Camera usually detects only Infrared waves emitted from the light in order to illustrate the temperature distribution. An Infrared diagnosis system can be applied to various fields. But the defect discrimination can be automatic or mechanized in the special shoes total inspection system. This study introduces a method for special shoes nondestructive total inspection. Performance of the proposed method is shown through thermo-Image.

Heat Transfer Analysis and Design of Shoes Using Finite Element Method (유한요소법을 이용한 신발의 열전달 해석 및 설계)

  • Kim, B.S.;Moon, B.Y.
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.206-212
    • /
    • 2003
  • This paper presents an analytic method and a design technique for golf shoes with coolant in the insole. The golf shoes are modeled using the finite element method for precision by considering the configuration by the insole, the midsole and the outsole, which compose the golf shoes. The values of standard human foot temperature for heat transfer boundary conditions are adopted for the FEA(Finite Element Analysis). By the commercial FEM software for heat transfer analysis, MARC V7.3, the temperature and the amounts of heat flux change for the insole are obtained, respectively. It can be concluded that results obtained by FEM in the insole are different depending on the characteristic of heat transfer. The results reported herein provide better understanding of analyzing the golf shoes. Moreover, it is believed that those properties of the results can be utilized in the shoes industry to develop the effective design method.

TiO2-containing nanocomposite structure: Application and investigation in shoes sports medical soles in physical activities

  • Xufei Li;H. Elhosiny Ali;Ibrahim Albaijan
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.329-337
    • /
    • 2023
  • Wearing the right sportswear is one of the essential points in exercising, which is mainly neglected. Sportswear should be suitable for the ambient temperature and not cause more heat or cold in the athlete's body. On the other hand, increased sweating and blood circulation during exercise should not cause fatigue or heatstroke in the athlete. Nanotechnology has grown significantly in the field of producing more efficient equipment in the field of sports. The increase in demand in sports for complete sports equipment has revealed the necessity of using the highest quality materials in this sector. In the world of championship sports, a minor change in equipment can lead to significant changes in causing failure and victory. Since the sole is the most critical part of sports shoes, with the introduction of nanotechnology and nanocomposites, it is possible to help athletes rush and increase their sense of calm and satisfaction. Using nanocomposites in the soles of shoes can improve some of their characteristics, prevent the smell and sweat of shoes, and induce water repellency in these shoes. In this research, titanium dioxide (TiO2) nanocomposite, along with cellulose, has been used to create antibacterial and hydrophobic properties in the soles of sports shoes. The synthesized nanocomposite has been synthesized using the least amount of chemicals, which shows this method's easy and cost-effective synthesis.

Study on Bond Used in Shoes Manufacturing Industry (신발제조업체에서 사용되는 접착제에 관한 연구)

  • Park, D.H.;Moon, D.H.;Lee, C.U.
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.2
    • /
    • pp.200-213
    • /
    • 1991
  • ln order to acquire the fundamental data for the organic solvents in bond and to contribute the health improvement of workers in deprtment of organic solvents in shoes manufacturing industries. The authors surveyed the contents of organic solvent in adhesive and determined the amount of volatilization of organic solvent by time and temperature with gaschromatography from March to September 1990. The results were as follows; 1) The kinds for organic solvents in bond were 9 that was Toluene, C-Hexane, N-Hexane, C-Hexanon, Aceton, Methyl Ethyl Keton, Dimethyl Formamide, Etyly Acetate. 2) Toluene and Methyl Ethyl Keton among the organic solvents in adhesive were over 80.18%. 3) The amount of volatilization of Methyl Cyclohexanone and Aceton by time and temperature were the most level than other compounds.

  • PDF