• Title/Summary/Keyword: Temperature hardening

Search Result 624, Processing Time 0.029 seconds

Evaluation of Performance of Artificial Neural Network based Hardening Model for Titanium Alloy Considering Strain Rate and Temperature (티타늄 합금의 변형률속도 및 온도를 고려한 인공신경망 기반 경화모델 성능평가)

  • M. Kim;S. Lim;Y. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.96-102
    • /
    • 2024
  • This study addresses evaluation of performance of hardening model for a titanium alloy (Ti6Al4V) based on the artificial neural network (ANN) regarding the strain rate and the temperature. Uniaxial compression tests were carried out at different strain rates from 0.001 /s to 10 /s and temperatures from 575 ℃ To 975 ℃. Using the experimental data, ANN models were trained and tested with different hyperparameters, such as size of hidden layer and optimizer. The input features were determined with the equivalent plastic strain, strain rate, and temperature while the output value was set to the equivalent stress. When the number of data is sufficient with a smooth tendency, both the Bayesian regulation (BR) and the Levenberg-Marquardt (LM) show good performance to predict the flow behavior. However, only BR algorithm shows a predictability when the number of data is insufficient. Furthermore, a proper size of the hidden layer must be confirmed to describe the behavior with the limited number of the data.

Finite Element Analysis of the Hot Rolled Cladding for the Ni-based Superalloy/steel Corrosion-resistant Alloy (CRA) Plate (니켈 기반 초합금 클래드 판재의 열간 압연 제조 공정 유한요소해석)

  • C. Kim;S.J. Bae;H. Lee;H.J. Bong;K.S. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.208-213
    • /
    • 2024
  • Ni-based superalloys have exceptional performance in high-temperature strength, corrosion resistance, etc, and it has been widely used in various applications that require corrosion resistance at high-temperature operations. However, the relatively expensive cost of the Ni-based superalloys is one of the major hurdles. The corrosion-resisted alloy(CRA) clad materials can be a cost-effective solution. In this study, finite element analysis of the hot rolling process for manufacturing of the Alloy 625/API X65 steel CRA clad plates is conducted. The stress-strain curves of the two materials are measured in compressive tests for various temperature and strain rate conditions, using the Gleeble tester. Then, strain hardening behavior is modeled following the modified Johnson-Cook model. Finite element analysis of the hot rolled cladding process is performed using this strain rate and temperature dependent hardening model. Finally, the thickness ratio of the CRA and base material is predicted and compared with experimental values.

Quality Changes of Dried Persimmons to the Storage Temperature and Packaging Materials (포장재과 저장온도에 따른 곶감의 저장 중 품질변화)

  • Lee, Seon-Ah;Park, Hyung-Woo;Kim, Sang-Hee;Kim, Yoon-Ho
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.13 no.1
    • /
    • pp.1-4
    • /
    • 2007
  • The dried persimmons is produced fungi and develop browning, hardening in circulation at normal temperature. To resolve such problem in commercial value preservation, the research was conducted to measure the quality changes of dried persimmons packagings at low temperature($0^{\circ}C$) during 160 days storage and the normal temperature($15^{\circ}C$) during 100 days storage. The rate of weight loss, fungi, browning, hardening were changed a little in the low temperature($0^{\circ}C$) storage and N/LDPE.

  • PDF

A Description of Thermomechanical Behavior Using a Rheological Model (리올러지 모델을 이용한 열적 기계적 변형 거동 모사)

  • Lee Keum-Oh;Hong Seong-Gu;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.757-764
    • /
    • 2006
  • Isothermal cyclic stress-strain deformation and thermomechanical deformation (TMD) of 429EM stainless steel were analyzed using a rheological model employing a bi-linear model. The proposed model was composed of three parameters: elastic modulus, yield stress and tangent modulus. Monotonic stress-strain curves at various temperatures were used to construct the model. The yield stress in the model was nearly same as 0.2% offset yield stress. Hardening relation factor, m, was proposed to relate cyclic hardening to kinematic hardening. Isothermal cyclic stress-strain deformation could be described well by the proposed model. The model was extended to describe TMD. The results revealed that the hi-linear thermomechanical model overestimates the experimental data under both in-phase and out-of-phase conditions in the temperature range of $350-500^{\circ}C$ and it was due to the enhanced dynamic recovery effect.

Sensitivity Analysis of Processing Parameters for the Laser Surface Hardening Treatment by Using the Finite Element Method (유한요소법을 이용한 레이저 표면경화처리 공정변수의 민감도 해석)

  • 이세환;양영수
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.228-234
    • /
    • 2001
  • A methodology is developed and used to evaluate the response sensitivity of the thermal systems to variations in their design parameters. Technique for computing the sensitivity of temperature distributions to changes in processing parameters needed to decide the more effective laser input parameters for laser surface hardening treatment is considered. In this study, a state equation governing the heat flow in laser surface treatment is analyzed using a three-dimensional finite element method and sensitivity data of the processing parameter obtained using a direct differentiation method is applied to the sensitivity analysis. The interesting processing parameters are taken as the laser scan velocity and laser beam radius ( $r_{ b}$), and the sensitivities of the temperature T versus v and $r_{b}$ are analyzed. These sensitivity results are obtained with another parameters fixed. To verify the numerical analysis results, hardened layer dimensions (width and depth) of the numerical analysis are compared with the experimental ones.nes.

  • PDF

A study on the Shrinkage Properties of precast concrete using Calcium hardening accelerator (칼슘계 경화촉진제를 사용한 프리캐스트 콘크리트의 수축특성에 관한 연구)

  • Min, Tae-Beom;Jo, In-Seong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.44-45
    • /
    • 2014
  • On this study, initial crack index was evaluated by performing FEM analysis to crack propagation from hydration heat for development of precast concrete. On the result, as increased the usage of hardening accelerator, initial compressive strength were improved and setting time also was shortened. Additionally, central temperature of concrete was increased, the reaching time for the highest temperature could be shortened. By the result to assess crack index, there was no problem about crack despite of growth of initial high hydration heating. This result guessed because of small size element when analyzed trough FEM, realization for mass concrete's crack index should be performed.

  • PDF

A study on the Effect for Process Parameters on the Micro-pulse Plasma Nitriding of Ductile Cast Iron (구상흑연주철의 마이크로 펄스 플라즈마 질화에 미치는 공정변수의 영향에 관한 연구)

  • 김무길;이철민;권성겸;정병호;이재식;유용주;김기준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.43-51
    • /
    • 2000
  • The effect of time, temperature and gas composition on the case hardened thickness, hardness and nitride formation in the surface of ductile cast iron(GCD400) have been studied by micro-pulse plasma technique. Typically, external compound layer and internal diffusion layer which is much thicker than compound layer was observed in the nitride hardening of ductile cast iron. The relative amount kind of phases formed in the nitrided hardening changed with the change of nitriding conditions. Generally, only nitride phases such as $\gamma^'$($Fe_4N$), or $\varepsilon$($Fe_{2-3}N$) phases were detected in compound layer by XRD analysis. The thickness of compound layer increased with the increase of nitrogen content in the gas composition. The optimum nitriding temperature was obtained at $520^{\circ}C$. The nitrided hardening thickness parabolically with nitriding time(t) and thus, the case hardened layer(d) fits well with the typical parabolic equation ; d=kt. The material constant k for GCD400 nitrided at $520^{\circ}C$ was $0.04919\times10^3{\mu}m.hr^{-1/2}$.

  • PDF

Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels

  • Ebrahimi, Tayebeh;Nejad, Mohammad Zamani;Jahankohan, Hamid;Hadi, Amin
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.189-211
    • /
    • 2021
  • An analytical solution is presented to analyze the thermoelastoplastic response of a rotating thick-walled cylindrical pressure vessel made of functionally graded material (FGM). The analysis is based on Tresca's yield condition, its associated flow rule and linear strain hardening material behaviour. The uncoupled theory of thermoelasticity is used, and the plane strain condition is assumed. The material properties except for Poisson's ratio, are assumed to vary nonlinearly in the radial direction. Elastic, partially plastic, fully plastic, and residual stress states are investigated. The heat conduction equation for the one-dimensional problem in cylindrical coordinates is used to obtain temperature distribution in the vessel. It is assumed that the inner surface is exposed to an airstream and that the outer surface is exposed to a uniform heat flux. Tresca's yield criterion and its associated flow rule are used to formulate six different plastic regions for a linearly hardening condition. All these stages are studied in detail. It is shown that the thermoelastoplastic stress response of a rotating FGM pressure vessel is affected significantly by the nonhomogeneity of the material and temperature gradient. The results are validated with those of other researchers for appropriate values of the system parameters and excellent agreement is observed.

Modeling of temperature history in the hardening of ultra-high-performance concrete

  • Wang, Xiao-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.273-284
    • /
    • 2014
  • Ultra-high-performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder ratios are 0.15 to 0.20 with 20 to 30% silica fume. In the production of ultra-high performance concrete, a significant temperature rise at an early age can be observed because of the higher cement content per unit mass of concrete. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of ultra-high performance concrete. The heat evolution rate of UHPC is determined from the contributions of cement hydration and the pozzolanic reaction. Furthermore, by combining a blended-cement hydration model with the finite-element method, the temperature history in the hardening of UHPC is evaluated using the degree of hydration of the cement and the silica fume. The predicted temperature-history curves were compared with experimental data, and a good correlation was found.

Estimation of Mechanical Properties of Mg Alloy at High Temperature by Tension and Compression Tests (인장 및 압축실험을 통한 마그네슘 합금의 고온 물성 평가)

  • Oh S. W.;Choo D. K.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.69-72
    • /
    • 2005
  • The crystal structure of magnesium is hexagonal close-packed (HCP), so its formability is poor at room temperature. But formability is improved in high temperature with increasing of the slip planes. Purpose of this paper is to know about the mechanical properties of magnesium alloy (AZ31B), before warm and hot forming process. The mechanical properties were defined by the tension and compression tests in various temperature and strain-rate. As the temperature is increased, yield${\cdot}$ultimate strength, K-value, work hardening exponent (n) and anisotropy factor (R) are decreased. But strain rate sensitivity (m) is increased. As strain-rate increased, yield${\cdot}$ultimate strength, K-value, and work hardening exponent (n) are increased. Also, microstructures of grains fine away at high strain-rate. These results will be used in simulations and manufacturing factor for warm and hot forming process.

  • PDF