• Title/Summary/Keyword: Temperature hardening

Search Result 624, Processing Time 0.028 seconds

Relationships between Exotherm Temperature and Working Life of Lightweight Polyester Mortars (경량 폴리머 모르타르의 발열온도특성과 가사시간의 관계)

  • ;;Katsunori Demura
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.315-318
    • /
    • 1999
  • This paper deals with the relationships between the exotherm temperature and working life of lightweight polyester mortar. Polyester mortars using types of lightweight aggregate compositions are prepared, and tested for exotherm temperature during hardening and working life. It is concluded from the test results that the behavior of exotherm temperature of lightweight polyester mortars is considerably affected by the lightweight aggregate composition. The lightweight polyester mortars using a lightweight aggregate compositeion ES gradually develop an exotherm temperature from 2$0^{\circ}C$, and give a working life. Then the exotherm temperature rises sharply up to a maximum exotherm temperature. The working life of the lightweight polyester mortars shortens with increasing catalyst and accelerator contents. The maximum exotherm temperature of the lightweight polyester mortars rises with increasing catalyst and accelerator contents.

  • PDF

Development of Technique to Improve the Formability of the Rear Floor in Series Stamping Process (연속 스탬핑 작업시 리어 플로어 성형성 향상기술 개발)

  • 김동환;이정민;고영호;차해규;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.25-28
    • /
    • 2004
  • A fracture was generated by change of clearance and deterioration of material properties on the sheet metal through temperature. This paper describes the results of a prediction about the temperature of the sheet metal during continuous stamping process, because the temperature increase of the sheet metal has a detrimental effect on formability. To analyze the temperature increase of the sheet metal during continuous stamping process, tensile and friction tests were performed from room temperature to 300$^{\circ}C$ at warm condition in this study. As temperature increase, tensile strength, elongation, strain hardening exponent and anisotropy coefficient for each specimens were decreased. On the other hand, friction coefficients were increased. From the FE-simulation results, temperature upward tendency was identified on dies and sheet metal. These observations are rationalized on the basis of the material properties, friction coefficient vs. temperature relationship for the sheet.

  • PDF

Automation of Lumber Drying System(I) -Continuously Rising Temperature Drying of Pinus densiflora- (목재건조(木材乾燥)의 자동화(自動化)에 관한 연구(硏究)(I) -연속온도상승(連續溫度上昇)스케쥴을 이용한 목재건조장치(木材乾燥裝置) 자동화(自動化)-)

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.12-19
    • /
    • 1994
  • An electrically heated experimental lumber dry kiln was retrofitted with a computer-based control system to control kiln conditions more precisely and monitor and record several kiln variables. Flat-sawn 2.5cm-thick Pinus densiflora boards were dried in constant temperature process(65$^{\circ}C$ & 50~60 %RH) and continuously rising temperature process, respectively. The average drying rate in continuously rising temperature process was 5.7 %/hr, which was above 3 times faster than that in constant temperature process. But, the average rate of case-hardening and moisture difference between shells and cores of boards dried in continuously rising temperature process were 82 % and 5.5 %, respectively, which were much larger than those of boards dried in constant temperature process.

  • PDF

Prediction of Serrated Chip Formation due to Micro Shear Band in Metal (미소 전단 띠 형성에 의한 톱니형 칩 생성 예측)

  • 임성한;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.427-733
    • /
    • 2003
  • Adiabatic shear bands have been observed in the serrated chip during high strain rate metal cutting process of medium carbon steel and titanium alloy. The recent microscopic observations have shown that dynamic recrystallization occurs in the narrow adiabatic shear bands. However the conventional flow stress models such as the Zerilli-Armstrong model and the Johnson-Cook model, in general, do not predict the occurrence of dynamic recrystallization (DRX) in the shear bands and the thermal softening effects accompanied by DRX. In the present study, a strain hardening and thermal softening model is proposed to predict the adiabatic shear localized chip formation. The finite element analysis (FEA) with this proposed flow stress model shows that the temperature of the shear band during cutting process rises above 0.5T$\sub$m/. The simulation shows that temperature rises to initiate dynamic recrystallization, dynamic recrystallization lowers the flow stress, and that adiabatic shear localized band and the serrated chip are formed. FEA is also used to predict and compare chip formations of two flow stress models in orthogonal metal cutting with AISI 1045. The predictions of the FEA agreed well with the experimental measurements.

  • PDF

Study on Erosion Characteristics of Aged HK40 Steel (열화된 HK40강의 마식특성에 관한 연구)

  • Kim, Am-Kee;Chun, Yong-Du;Lee, Kum-Bae;Kim, Chang-Hoon;Nahm, Seung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.403-408
    • /
    • 2003
  • The erosion behavior of :artificially aged HK40 steel was investigated. Erosion tests were conducted at room temperature, $200^{\circ}C$ and $400^{\circ}C$ using $Al_2O_3$ particles. Erosion rates increased with increment of temperature. The maximum erosion rate increased with the impingement angle of 30 degree. The erosion rate increased, reached the maximum at 1000 hours, and after that, decreased with heat treatment time. The mechanism of erosion seems to be the cutting wear which is very much associated with the strength of material. As results, the erosion rates were rather affected by the tensile strength and the strain hardening coefficient than the hardness and the yield strength. Such changes of material properties would be caused by the change of micro-structure due to the precipitation of carbide and the dissolution of solid element within matrix during the heat treatment.

  • PDF

Effect of Si and Ca Addition on the Strengthening Behavior of Gravity-cast AM60 Magnesium Alloys (중력주조 AM60 마그네슘 합금의 강화 거동에 미치는 Si 및 Ca 첨가영향)

  • Kim, Jae-Woo;Kim, Do-Hyang;Shin, Kwang-Seon
    • Journal of Korea Foundry Society
    • /
    • v.18 no.4
    • /
    • pp.364-372
    • /
    • 1998
  • Effects of Si and Ca additions on the mechanical properties of AM60 based Mg alloys have been investigated. Hardness of the AM60 based Mg alloys reached a maximum value after aging for approximately 33 hours but the amount of hardness increase was negligible. The poor age hardening response of the alloys was due to low Al content, which implies that Al content must be >6 wt.% to observe age hardening effect. The tensile and yield strength increased with increasing Al, Si, and Ca content but elongation decreased with increasing Al and Si content. The best mechanical properties obtained in AM 40-2.5Si-0.2Ca alloy after T4 heat treatment were as follows; tensile strength 193.4 MPa, yield strength 79.2 MPa, and elongation 11.2%. High temperature property obtained from creep test was also improved by introducing $Mg_2Si$ which has high hardness, high melting temperature and low thermal expansion coefficient.

  • PDF

Effect of 2-Hydroxyethyl Acrylate for the Properties of Acrylic Pressure Sensitive Adhesives (2-Hydroxyethyl Acrylate가 아크릴계 점착제의 물성에 미치는 영향)

  • Jeong, Noh-Hee;Park, Young-Jun;Lee, Hyang-Woo;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.262-266
    • /
    • 2000
  • Acrylic pressure sensitive adhesives of n-butyl acrylate, 2-ethyl acrylate, methyl acrylate, vinyl acetate, acrylic acid, acrylonitrile and 2-hydroxyethyl acrylate were synthesized and basic physical properties of pressure sensitive adhesives with increasing the contents of 2-hydroxyethyl acrylate were investigated. 2-Hydroxyethyl acrylates effects on glass transition temperature, viscosity, hardening time and peel strength. Glass transition temperature(Tg) decreased with increasing the contents of 2-hydroxyethyl acrylate. Viscosity and hardening time were increased with increasing the contents of 2-hydroxyethyl acrylate. On the other hands, peel strength increased with increasing the contents of 2-hydroxyethyl acrylate up to 6 wt% and the decreased at further higher contents of 2-hydroxyethyl acrylate. In peel test, interfacial failure was occured in 8 wt% and 10wt%.

Finite Element Study on Deformation Characteristics and Damage Evolution in Warm Backward Extrusion of AZ31 Mg Alloys (AZ31 마그네슘 합금의 온간 후방압출에서 변형특성과 결함성장에 관한 유한요소해석)

  • Yoon, D.J.;Kim, E.Z.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.614-620
    • /
    • 2007
  • Deformation characteristics and damage evolution during warm backward extrusion of bulk AZ31 Mg alloy were investigated using finite element analyses. AZ31 Mg alloy was assumed as a hardening viscoplastic material. The tensile tests of AZ31 Mg alloy in previous experimental works showed the ductile fracture even at the warm temperature of $175^{\circ}C$. In this study, damage evolution model proposed by Lee and Dawson, which was developed based on the growth of micro voids in hardening viscoplastic materials, was combined into DEFORM 2D. Effects of forming temperature, punch speed, extrusion ratio and size of work piece on formability in warm backward extrusion as well as on mechanical properties of extruded products were examined. In general, finite element predictions matched the experimental observations and supported the analyses based on experiments. Distributions of accumulated damage predicted by the finite element simulations were effective to identify the locations of possible fracture. Finally, it was concluded that the process model, DEFORM2D combined with Lee & Dawson#s damage evolution model, was effective for the analysis of warm backward extrusion of AZ31 Mg alloys.

A Study on Hardening Characteristics of Carbon Steel by Using Finite Element Method (유한요소법을 이용한 탄소강의 경화특성에 관한 연구)

  • Hwang, Hyun-Tae;So, Sang-Woo;Kim, Jong-Do
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.4
    • /
    • pp.203-208
    • /
    • 2011
  • Recently, from general machine parts and automobile parts using carbon steel to a mold, there has been efforts for improving durability and attrition resistance of these parts. Especially, heat treatment with laser which works fast and automatically can be used for the mass production with high quality. Moreover, local heat treatment can be used to handle with complex and precise parts. Accordingly, we analyzed hardening characteristics of carbon steel using the finite element method and compare the experimental results to have more reliability. We also proved the cause of thermal deformation with temperature and stress distribution by heat treatment. After these analysis and experimental, we found that each maximum hardness of the two tests was 728 Hv and 700 Hv, on condition of $1050^{\circ}C$ heating temperature, and 2 mm/sec laser speed. We also found that difference of surface stress-distribution was occurred, and this makes deformation mode up after heat treatment.