• Title/Summary/Keyword: Temperature hardening

Search Result 624, Processing Time 0.028 seconds

A Study on the resistance of surface hardening treated Aluminum, Titanium alloy under the high velocity impact (표면 경화 처리된 Al, Ti의 고속 충격 저항성에 관한 연구)

  • 손세원;김희재;홍성희;김영태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.852-855
    • /
    • 2002
  • In order to investigate the fracture behaviors(penetration modes) and resistance to penetration during ballistic impact of surface hardening treated Aluminum, Titanium alloy laminates, ballistic tests were conducted. In this paper, Anodized Al 5083-H131 alloy laminates and nitrified Ti (Gr.2) alloy laminates were used to achieve higher surface hardness. Surface hardness test were conducted using a Micro victor's hardness tester and thickness of surface hardening treated specimens was measured by video microscope. Resistance to penetration is determined by the protection ballistic limit($V_50$), a statistical velocity with 50% probability far complete penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed at and above ballistic limit velocities, as a result of $V_50$ test and Projectile Through Plates (PTP) test methods. PTP tests were conducted with $0^{\circ}$ obliquity at room temperature using 5.56mm ball projectile. $V_50$ tests with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during PTP tests.

  • PDF

Evaluation of the influence of creep and shrinkage determinants on column shortening in mid-rise buildings

  • B-Jahromi, Ali;Rotimi, Abdulazeez;Tovi, Shivan;Goodchild, Charles;Rizzuto, Joseph
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.155-171
    • /
    • 2017
  • The phenomenon of concrete column shortening has been widely acknowledged since it first became apparent in the 1960s. Axial column shortening is due to the combined effect of elastic and inelastic deformations, shrinkage and creep. This study aims to investigate the effects of ambient temperature, relative humidity, cement hardening speed and aggregate type on concrete column shortening. The investigation was conducted using a column shortening prediction model which is underpinned by the Eurocode 2. Critical analysis and evaluation of the results showed that the concrete aggregate types used in the concrete have significant impact on column shortening. Generally, aggregates with higher moduli of elasticity hold the best results in terms of shortening. Cement type used is another significant factor, as using slow hardening cement gives better results compared to rapid hardening cement. This study also showed that environmental factors, namely, ambient temperature and relative humidity have less impact on column shortening.

Effects of Dislocation Distribution and Carbon Effective Diffusion on Strain Aging Behavior of a Low Carbon Dual Phase Steel (저탄소 Dual Phase강의 가공시효에 미치는 탄소유효확산 및 전위분포의 영향)

  • Yoo, S.H.;Jung, K.C.;Hong, K.H.;Park, KT.
    • Transactions of Materials Processing
    • /
    • v.30 no.5
    • /
    • pp.226-235
    • /
    • 2021
  • The strain aging behavior of a low carbon dual phase steel was examined in two conditions: representing room temperature strain aging (100 ℃ × 1 hr after 7.5 % prestrain) and bake hardening process (170 ℃ × 20 min after 2 % prestrain), basing on carbon effective diffusion and dislocation distribution. The first principle calculations revealed that (Mn or Cr)-vacancy-C complexes exhibit the strongest attractive interaction compared to other complexes, therefore, act as strong trapping sites for carbon. For room temperature strain aging condition, the carbon effective diffusion distance is smaller than the dislocation distance in the high dislocation density region near ferrite/martensite interfaces as well as ferrite interior considering the carbon trapping effect of the (Mn or Cr)-vacancy-C complexes, implying ineffective Cottrell atmosphere formation. Under bake hardening condition, the carbon effective diffusion distance is larger compared to the dislocation distance in both regions. Therefore, formation of the Cottrell atmosphere is relatively easy resulting in to a relatively large increase in yield strength under bake hardening condition.

The Application of P/M Advanced Techniques to Sintered Gears

  • Chongxi, Bao;Zhouqiang, Shen;Zhengping, Shu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.987-988
    • /
    • 2006
  • The processes of P/M affect the properties of sintered gears. The different techniques of P/M lead to the different properties of sintered gears. This paper summarizes new progress in powder metallurgy for sintered gears. These progresses include warm compaction, high velocity compaction, sinter hardening, high temperature sintering, infiltration, CNC powder press and surface densification etc.

  • PDF

On the Plastic Deformation of Polar-Class Ship's Single Frame Structures Subjected to Collision Loadings (충돌하중을 받는 빙해선박 단일 늑골 구조의 소성변형에 관한 연구)

  • Min, Dug-Ki;Shin, Dong-Wan;Kim, Sin-Ho;Heo, Yeoung-Mi;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.232-238
    • /
    • 2012
  • The effects of temperature on the structural behavior of polar class vessels have been experimentally and numerically investigated. Experiments were carried out on single frame structures made of steel material, DH36, which is used for outer shell of the vessels making transit through the polar region. A knife edge type striker was dropped down onto single frame structures. The temperatures of the single frames were set to $-30^{\circ}C$, $-50^{\circ}C$ and room temperature. The deflection around the mid-point of the single frame was measured and numerically simulated using finite element model. Strain rate effect on the structural behavior has been investigated and turned out that the strain rate effect can be neglected. From the results of the experiment and numerical analyses, it has been noticed that the permanent deflection at lower temperature was reduced due to a temperature hardening of material as expected.

Determination and Verification of Flow Stress of Low-alloy Steel Using Cutting Test (절삭실험을 이용한 저합금강의 유동응력 결정 및 검증)

  • Ahn, Kwang-Woo;Kim, Dong-Hoo;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.50-56
    • /
    • 2014
  • A technique based on the finite element method (FEM) is used in the simulation of metal cutting process. This offers the advantages of the prediction of the cutting force, the stresses, the temperature, the tool wear, and optimization of the cutting condition, the tool shape and the residual stress of the surface. However, the accuracy and reliability of prediction depend on the flow stress of the workpiece. There are various models which describe the relationship between the flow stress and the strain. The Johnson-Cook model is a well-known material model capable of doing this. Low-alloy steel is developed for a dry storage container for used nuclear fuel. Related to this, a process analysis of the plastic machining capability is necessary. For a plastic processing analysis of machining or forging, there are five parameters that must be input into the Johnson-Cook model in this paper. These are (1) the determination of the strain-hardening modulus and the strain hardening exponent through a room-temperature tensile test, (2) the determination of the thermal softening exponent through a high-temperature tensile test, (3) the determination of the cutting forces through an orthogonal cutting test at various cutting speeds, (4) the determination of the strain-rate hardening modulus comparing the orthogonal cutting test results with FEM results. (5) Finally, to validate the Johnson-Cook material parameters, a comparison of the room-temperature tensile test result with a quasi-static simulation using LS-Dyna is necessary.

Effect of Austenitizing Temperature on Secondary Hardening and Impact Toughness in P/M High Speed Vanadium Steel (바나듐 분말 고속도공구강의 이차경화 및 충격인성에 미치는 오스테니타이징 온도의 영향)

  • Moon, H.K.;Yang, H.R.;Cho, K.S.;Lee, K.B.;Kwon, H.
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.477-481
    • /
    • 2008
  • The secondary hardening and fracture behavior in P/M high speed steels bearing V content of 9 to 10 wt% have been investigated in terms of austenitizing temperature and precipitation behavior. Austenitizing was conducted at 1,100 and $1,175^{\circ}C$ of relatively low and high temperatures. Coarse primary carbides retained after austenitization were mainly V-rich MC type. They give a significant influence on hardeness and toughness, as well as wear resistance. Tempering was performed in the range of $500{\sim}600^{\circ}C$. The peak hardness resulting from the precipitation of the fine MC secondary carbides was observed near 520, irrespective of austenitizing temperature. Aging acceleration(or deceleration) did not occur with increasing austenitizing temperature because it mainly influences contents of V and C of matrix through the dissloution of coarse primary MC containing lots of V and C. The precipitation of secondary MC carbides, which also contain V and C, did not change the aging kinetics itself. In the 10V alloy containing much higher C content, the impact toughness was lower than 9V alloy, because of the larger amount of primary carbide and high hardness.

Study on Precipitation and Mechanical Properties of High Strength Invar Alloy (고강도 인바합금의 석출거동과 기계적 특성 연구)

  • Jeong, J.Y.;Lee, K.D.;Ha, T.K.;Jeong, H.T.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.507-510
    • /
    • 2008
  • Effect of V addition on the precipitation behavior and strength of Fe-36Ni based high strength Invar alloy for power transmission wire was investigated. Fe-36Ni Invar alloy plates were fabricated using conventional ingot casting followed by hot rolling. High strength can be obtained through precipitation hardening and strain hardening by cold rolling. Simulation using FactSage$^{(R)}$ revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, $Mo_{2}C$ and $M_{23}C_6$ carbide. The latter stoichiometric carbide was expected to be formed at relatively lower temperature of $800^{\circ}C$.

An Experimental Study on the Influence of Heat of Hydration in High Strength Concrete during Hardening Process (고강도콘크리트의 내부온도이력과 경화콘크리트의 특성에 관한 실험적 연구)

  • 윤영수;이승훈;박희민;성상래;백승준;장일영;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.127-132
    • /
    • 1994
  • This study attemps to investigate the influence of heat of hydration occured during hardening on the strength development of high strength concrete. The concrete design strengths of 500kg/$\textrm{cm}^2$ and 700kg/$\textrm{cm}^2$ were considered to simulated the square columns having $80\times80cm$ and $100\times100cm$, respectively. Both standard curing and field curing specimen were prepared at the specified ages, and the cores were drilled out from the structure. The thermal sensors were installed into the specimen to measure the heat of hydration process occurred during the hardening. This paper tries to uncover the relationship between the temperature history of the concrete and strength development. The correlation of core strength and specimen strength with curing condition is also discussed. Further research is desired to enlight the relationship between strength and heat of hydration of high strength concrete.

  • PDF

Age Hardening and Mechanical Property of Extruded Al-Zn-Mg-(Cu) Al Alloys with Sc addition (Sc 첨가된 Al-Zn-Mg-(Cu)계 알루미늄 합금 압출재의 시효 경화 거동과 기계적 성질)

  • Shim, Sung Yong;Lim, Su Gun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.5
    • /
    • pp.243-249
    • /
    • 2007
  • The age hardening behavior and mechanical properties of an extruded Al-Zn-Mg-(Cu)-0.1 wt.%Sc alloy were investigated with the Sc addition and ageing temperature. The results showed that the $Al_3Sc$ compounds were formed by Sc addition and distributed preferentially along the extrusion direction. The age hardening of Al-Zn-Mg-Cu-0.1 wt.%Sc alloy which was treated by T6 process was more significant than that of Al-Zn-Mg-0.1 wt.%Sc alloy. The tensile property of Al-Zn-Mg-Cu+0.1 wt.%Sc alloy was also higher than that of Al-Zn-Mg-0.1 wt.%Sc alloy, which is 691 MPa and 584 MPa in strength and 9% and 11% in elongation, respectively.