• 제목/요약/키워드: Temperature gradients

검색결과 293건 처리시간 0.024초

버너방식 DPF 시스템의 재생과정 중 발생하는 내부 온도분포 및 온도구 배에 관한 고찰 (Considerations on the Temperature Distributions and Gradients in the Filter During Regeneration in Burner Type Diesel Particulate Trap System)

  • 박동선;김재업;김응서
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.78-84
    • /
    • 1996
  • In order to eliminate TPM(Total Particulate Matter) from a diesel engine, we designed and developed a particulate trap system using a burner, which was named as AEFR(Active Exhaust Feeding Regeneration) system. We have considered the temperature distributions and gradients in the filter being regenerated according to regeneration control schemes Ⅰ, Ⅱ and Ⅲ. Schemes Ⅲ has shown the most desirable peak temperature and temperature gradients in AFER system. Finally, it was concluded that much lower peak temperature and temperature gradients in the filter could be obtained than that of other advanced research results by our AEFR system.

  • PDF

Analysis of three-dimensional thermal gradients for arch bridge girders using long-term monitoring data

  • Zhou, Guang-Dong;Yi, Ting-Hua;Chen, Bin;Zhang, Huan
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.469-488
    • /
    • 2015
  • Thermal loads, especially thermal gradients, have a considerable effect on the behaviors of large-scale bridges throughout their lifecycles. Bridge design specifications provide minimal guidance regarding thermal gradients for simple bridge girders and do not consider transversal thermal gradients in wide girder cross-sections. This paper investigates the three-dimensional thermal gradients of arch bridge girders by integrating long-term field monitoring data recorded by a structural health monitoring system, with emphasis on the vertical and transversal thermal gradients of wide concrete-steel composite girders. Based on field monitoring data for one year, the time-dependent characteristics of temperature and three-dimensional thermal gradients in girder cross-sections are explored. A statistical analysis of thermal gradients is conducted, and the probability density functions of transversal and vertical thermal gradients are estimated. The extreme thermal gradients are predicted with a specific return period by employing an extreme value analysis, and the profiles of the vertical thermal gradient are established for bridge design. The transversal and vertical thermal gradients are developed to help engineers understand the thermal behaviors of concrete-steel composite girders during their service periods.

Oxygen Potential Gradient Induced Degradation of Oxides

  • Martin, Manfred
    • 한국세라믹학회지
    • /
    • 제49권1호
    • /
    • pp.29-36
    • /
    • 2012
  • In many applications of functional oxides originally homogeneous materials are exposed to gradients in the chemical potential of oxygen. Prominent examples are solid oxide fuel cells (SOFCs) or oxygen permeation membranes (OPMs). Other thermodynamic potential gradients are gradients of electrical potential, temperature or uni-axial pressure. The applied gradients act as generalized thermodynamic forces and induce directed fluxes of the mobile components. These fluxes may lead to three basic degradation phenomena of the materials, which are kinetic demixing, kinetic decomposition, and morphological instabilities.

저온저장고 내부의 균일한 온도분포를 위한 3차원 공기유동 분석 (3-D Simulation of Air Flow in Cold Storage Room for Uniform Temperature Distribution)

  • 성제중;고학균;조성인;양길모
    • Journal of Biosystems Engineering
    • /
    • 제25권4호
    • /
    • pp.279-286
    • /
    • 2000
  • Most of the domestic cold storage rooms are inefficient for agricultural products because of temperature gradients inside the storage rooms. Temperature gradients are developed mainly by improper airflow pattern inside the storage room, which is a main cause of the spoilage of the agricultural products. There proper airflow pattern is essential to minimize these temperature gradients and the spoilage. The performance and characteristics of a cold storage room were determined as a function of airflow pattern and temperature distribution in forced circulation cold storage room. A commercial CFD(computational fluid dynamics) code was used to simulate 3-D airflow in the cold storage room. Solving the flow equations for the storage room, a standard k-$\varepsilon$ turbulent model was implemented to calculate steady state turbulent velocity distribution. The CFD prediction results were compared with temperature measurements inside the cold storage room. In case of pallet storage, Temperature gradients inside pallet storage was reduced because the contact area of cold air expanded through an alley of airflow in storage. But is case of bulk storage, the last temperature of storage considerably rose more than the initial temperature of storage. The reason was that bulk storage didn't include any alley of airflow in storage.

  • PDF

Experimental analysis of thermal gradient in concrete box girder bridges and effects of polyurethane insulation in thermal loads reduction

  • Raeesi, Farzad;Heydari, Sajad;Veladi, Hedayat
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.645-654
    • /
    • 2022
  • Environmental thermal loads such as vertical and lateral temperature gradients are significant factors that must be taken into account when designing the bridge. Different models have been developed and used by countries for simulating thermal gradients in bridge codes. In most of the codes only vertical temperature gradients are considered, such as Iranian Standard Loads for Bridge code (ISLB), which only considers the vertical gradient for bridge design proposes. On the other hand, the vertical gradient profile specified in ISLB, has many lacks due to the diversity of climate in Iran, and only one vertical gradient profile is defined for whole Iran. This paper aims to get the both vertical and lateral gradient loads for the concrete box girder using experimental analysis in the capital of Iran, Tehran. To fulfill this aim, thermocouples are installed in experimental concrete segment and temperatures in different location of the segment are recorded. A three dimensional finite element model of concrete box-girder bridge is constructed to study the effects of thermal loads. Results of investigation proved that the effects of thermal loads are not negligible, and must be considered in design processes. Moreover, a solution for reducing the negative effects of thermal gradients in bridges is proposed. Results of the simulation show that using one layer polyurethane insulation can significantly reduce the thermal gradients and thermal stresses.

GENERATION OF MAGNETIC FIELDS BY TEMPERATURE GRADIENTS

  • OKABE NOBUHIRO;HATTORI MAKOTO
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.547-551
    • /
    • 2004
  • We showed that magnetic fields are generated in the plasma which have the temperature inhomogeneities. The mechanism is the same as the Weibel instability because the velocity distribution functions are at non-equilibrium and anisotropic under the temperature gradients. The growth timescale is much shorter than the dynamical time of structure formation. The coherence length of magnetic fields at the saturated time is much shorter than kpc scale and then, at nonlinear phase, become longer by inverse-cascade process. We report the application of our results to clusters of galaxies, not including hydrodynamic effects.

강제 재생 방식 DPF 내부의 온도 분포 특성에 관한 수치해석 (Numerical Analysis on the Characteristics of Temperature Distribution in an Active Regeneration DPF Type)

  • 박성천;이한성
    • 한국기계기술학회지
    • /
    • 제13권2호
    • /
    • pp.55-61
    • /
    • 2011
  • This study analyzed on the characteristics of temperature distribution in an active regeneration DPF using computer simulation. In order to verify the boundary condition of analysis, results of temperature distribution in DPF are compared between experimental and computer simulation. Using this boundary condition, temperature distribution and filter's durability in DPF analyzed according to various operating conditions. The results of computational analysis are agreed well with experimental ones from the tendency of temperature distribution of axis and radius direction. The temperature increases and the axial temperature gradients in DPF according to velocity of exhaust gas are lowered as the high velocity of exhaust gas. But the temperature gradients of radius direction at exit side in DPF are grown as the high velocity of exhaust gas. The results according to inlet temperature of exhaust gas show that the increase ratios of temperature in DPF are grown as the high temperature of exhaust gas.

다양한 대기풍속 및 대기온도 구배 조건에서의 공장 배출 가스의 확산 특성에 관한 연구 (A Study for Characteristics of Stack Plume Dispersion under Various)

  • 박일석
    • 설비공학논문집
    • /
    • 제22권11호
    • /
    • pp.773-780
    • /
    • 2010
  • The dispersion of plume which is emitted from a chimney is governed by a lot of factors: wind, local terrain, turbulence intensity of atmosphere, and temperature, etc. In this study, we numerically investigate the plume dispersions for various altitudinal temperature gradients and wind speeds. The normal atmosphere has the temperature decrease of $0.6^{\circ}C/100m$, however, actually the real atmosphere has the various altitudinal temperature profiles according to the meteorological factors. A previous study focused on this atmospheric temperature gradient which induces a large scale vertical flow motion in the atmosphere thus makes a peculiar plume dispersion characteristics. In this paper, the effects of the atmospheric temperature gradient as well as the wind speed are investigated concurrently. The results for the developing processes in the atmosphere and the affluent's concentrations at the ambient and ground level are compared under the various altitudinal temperature gradients and wind speeds.

Degradation of Functional Materials in Temperature Gradients - Thermodiffusion and the Soret Effect

  • Janek, Jurgen;Sann, Joachim;Mogwitz, Boris;Rohnke, Marcus;Kleine-Boymann, Matthias
    • 한국세라믹학회지
    • /
    • 제49권1호
    • /
    • pp.56-65
    • /
    • 2012
  • Functional materials are often exposed to high temperatures and inherent temperature gradients. These temperature gradients act as thermodynamic driving forces for the diffusion of mobile components. The detailed consequences of thermodiffusion depend on the boundary conditions of the non-isothermal sample: Once the boundaries of the sample are inert and closed for exchange of the mobile components, thermodiffusion leads to their pile-up in the stationary state (the so called Soret effect). Once the system is open for an exchange of the mobile component, chemical diffusion adds to the Soret effect, and stationary non-zero component fluxes are additionally observed in the stationary state. In this review, the essential aspects of thermodiffusion and Soret effect in inorganic functional materials are briefly summarized and our current practical knowledge is reviewed. Major examples include nonstoichiometric binary compounds (oxides and other chalcogenides) and ternary solid solutions. The potential influence of the Soret effect on the long term stability of high temperature thermoelectrics is briefly discussed. Typical Soret coefficients for nonstoichiometric compounds are found to be of the order of (d${\delta}$/dT) ${\approx}$ 1%/K.

온도구배가 있는 필릿용접에서 초음파의 전파와 탐촉자의 위치 결정 (The determination of transducer location and ultrasonic wave propagation through temperature gradients in fillet are welding)

  • 정선국;조형석
    • Journal of Welding and Joining
    • /
    • 제15권3호
    • /
    • pp.109-117
    • /
    • 1997
  • The temperature gradient in weldment changes the transit time and distorts the direction of the ultrasound beam to the higher temperature regions due to the lower sound speed in the hotter regions of the weldment. This paper describes a ray-tracing method for calculating the effects of temperature gradients on ultrasonic propagation in fillet arc weldig. In the method, weldment is conceptually devided into a number of layers and the refraction and sound speed at each layer is calculated using the temperature which calculated from analytical solution. Calculating the time and location of echoes arrived from various interfaces around a molten weld pool determines the optimum location of ultrasonic transducers and the correct position of flaws.

  • PDF