• Title/Summary/Keyword: Temperature fields

Search Result 1,721, Processing Time 0.032 seconds

A Study on the Flow Analysis for Natural Convection of Magnetic Fluid in a Cubic Cavity (밀폐공간내 자성유체의 유동특성에 관한 연구)

  • Ryu, Shin-Oh;Park, Joung-Woo;Seo, Lee-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.142-147
    • /
    • 2001
  • Natural convection of a magnetic fluid is different from that of Newtonian fluids because magnetic body force exists in an addition to gravity and buoyancy. In this paper, natural convection of a magnetic fluids(W-40) in a cubic cavity is examined by numerical and experimental method. One side wall was kept at a constant temperature($25^{\circ}C$), and the opposite side wall was also held at a constant but lower temperature($20^{\circ}C$). Under above conditions, various magnitudes of the magnetic fields were applied up. GSMAC scheme is used for a numerical method, and the thermo-sensitive liquid crystal film(R20C5A) is utilized in order to visualize wall-temperature distributions as an experimental method. This study has resulted in the following fact that the natural convection of a magnetic fluids is controlled by the direction and intensity of the magnetic fields.

  • PDF

Prediction of MCFC Performance Using Three Dimensional Heat and fluid Flow Analysis with Electrochemical Reaction (전기 화학 반응을 포함한 3차원 열유동 해석을 이용한 용융탄산염 연료전지의 성능예측)

  • Cho H. M.;Lee K. W.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.219-224
    • /
    • 2003
  • An analysis procedure for the MCFC channel flow has been developed to predict the fuel cell performance. As for the electrochemical reaction, among several chemical reaction models, one that fits the data best is adopted after a comprehensive comparative study. The Wavier-Stokes, energy, and species equations are solved to obtain the velocity, temperature and concentration fields for a specified average current density. The procedure is iterative as the local current density, or the reaction rate, is allowed to vary with the gas composition. A series of calculations are then carried out to examine the effects of gas flow rate, gas composition, gas usage rate, inlet gas temperature, and average current density on the fuel cell performance. The fuel cell characteristics, such as the temperature, current density distributions, and the concentration fields, for various operating conditions are presented and discussed.

  • PDF

Monitoring System of Agriculture Fields using ZigBee Modules

  • Ayurzana, Odgerel;Tsagaanchuluun, Sugir
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.89-96
    • /
    • 2021
  • The goal of this study is to develop experiment monitoring system of agriculture fields using ZigBee wireless modules. Soil moisture, ambient temperature, atmospheric pressure and intensity of sunlight are the most important factorsto grow a wheat crop and other vegetables. In orderto monitorthe factorssoil moisture (YL69), air pressure (BMP180), temperature (DS18B20), photoresistor were used for sensing environment data. The TI CC2530 RF SoC chip was used in the system. ZigBee modules were connected to star topology. ZigBee modules send data wirelessly to a data center. This data can be displayed and analyzed on the main monitoring program as needed also sent to the client mobile. Characteristics of the sensors were determined by experiment results.

Temperature effect on spherical Couette flow of Oldroyd-B fluid

  • Hassan, A. Abu-El;Zidan, M.;Moussa, M.M.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.201-209
    • /
    • 2007
  • The present paper is concerned with non-isothermal spherical Couette flow of Oldroyd-B fluid in the annular region between two concentric spheres. The inner sphere rotates with a uniform angular velocity while the outer sphere is kept at rest. Moreover, the two spherical boundaries are maintained at fixed temperature values. Hence, the fluid is effect by two heat sources; namely, the viscous heating and the temperature gradient between the two spheres. The viscoelasticity of the fluid is assumed to dominate the inertia such that the latter can be neglected. An approximate analytical solution of the energy and momentum equations is obtained through the expansion of the dynamical fields in power series of Nahme number. The analysis show that, the temperature variation due to the external source appears in the zero order solution and its effect extends to the fluid velocity distribution up to present second order. Viscous heating contributes in the first and second order solutions. In contrast to isothermal case, a first order axial velocity and a second order stream function fields has been appeared. Moreover, at higher orders the temperature distribution depends on the gap width between the two spheres. Finally, there exist a thermal distribution of positive and negative values depend on their positions in the domain region between the two spheres.

A Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow (IV) -On the Cylinder Wake with Various Heating Rates- (열성층유동장에 놓인 원주후류의 특성에 대한 연구 (4) -가열량의 변화에 따른 원주후류에 대하여-)

  • 김경천;정양범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1340-1350
    • /
    • 1995
  • The effects of thermal stratification on the flow past a heated circular cylinder with various heating rates were examined in a wind tunnel. Turbulent intensities, r.m.s.values of temperature and turbulent convective heat flux distributions in the cylinder wakes with and without thermal stratification were measured by using a hot-wire and cold-wire combination probe. The phase averaging method was also used to estimate coherent contributions to the turbulent flow field in the near wake. The results show that the scalar mixing process is very different according to the mean temperature fields especially in the upper part of the wake. The coherent structure of the temperature field makes a large contribution to the time mean value like velocity components. However, the coherency of the temperature fluctuation is very different with the change of mean temperature fields, though the velocity coherent motions are quite similar in all experimental conditions.

A Study on the Application Cases of High Temperature Superconductivity to Electrical Power System (고온 초전도 선재의 전력계통 적용 사례 분석 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.7
    • /
    • pp.775-780
    • /
    • 2015
  • Because of the advantages such as the zero electrical resistance effect that disappears in the vicinity of the absolute temperature and the magnetic levitation effect, the superconducting applications are being tried in a variety of fields. But, those have faced many difficulties in the practical use because of the difficulty for the realization of the superconducting critical temperature. Recently, however, because the high-temperature super conductors was discovered newly which show superconductivity more than $30^{\circ}K$, the application researches based on it are being tried in various fields. Therefore, this paper examines the possibilities and issues by surveying the high temperature superconducting applications to electrical power system.

THE LOW TEMPERATURE DEPENDENCE OF MAGNETIZATION AND AC SUSCEPTIBILITY OF GLASSY $Fe_{91-x}Zr_{7}B_{2}Ni_{x}$ (x=0,5,10,15) ALLOYS

  • Strom, V.;Kim, K.S.;Jonsson, B.J.;Yu, S.C.;Inoue, A.;Rao, K.V.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.515-518
    • /
    • 1995
  • We have studied the magnetization in fields up to 1T at 5K, the saturation magnetization dependence on temperature and the temperature dependence of AC-susceptibility at very low fields (5mOe to 50mOe) of glassy $Fe_{91-x}Zr_{7}B_{2}Ni_{x}$ (x = 0, 5, 10, 15) alloys. The temperature dependence of the magnetization follows the predictions of spin wave excitations with long wavelengths. At zero Ni concentration there is a clear competition between ferromagnetic and antiferromagnetic interactions giving rise to spin-glass behaviour. The addition of Ni drastically modifies the magnetic properties: the antiferromagnetic exchange coupling is reduced and finally disappears, the spin wave stiffness increases from 39.5 to $87.3\;meV{\AA}^{2}$ and To increases from 230 K to 478 K. We develop a simple model to quantify the competing interactions and to relate the antiferromagnetically coupled Fe moments to the Ni concentration. We find that the initial susceptibility increases with increasing Ni content along with a decrease of the temperature dependence.

  • PDF

Effect of applied magnetic fields on Czochralski single crystal growth (Part II) (Czochralski 단결성 성장특성제어를 위한 자장형태에 관한 연구 (Part 2))

  • Chang Nyung Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.46-56
    • /
    • 1994
  • The characteristics of flows, temperatures, concentrations of the boron are numerically studied when uniform axial magnetic fields are applied in the Czechralski crucible. The to governing factors to the flow regimes are buoyancy, thermocapillarity, centrifugal forces, magnetic forces, diffusion coefficient and segregation coefficient of the boron. Since the concentration of the boron is so low that buoyancy effects are negligible, it cannot affect the flow and temperature fields. From the fact that the flow fields are rotationally symmetric, two velocity components in the meridional plane and the circumferential velocity are calculated together with the temperature in the steady state. Based on the known velocity and temperature distributions the unsteady concentration distributions of the boron are calculated. As the strength of the magnetic is increased, the flow velocities are decreased. Circumferential velocities are large near the crucible side-wall and in the region below the rotating crystal. Steep temperatures gradient near the edge of the rotating crystal causes the Marangoni convection. It has been found out that the convection characteristics affects the unsteady transport phenomena of the boron.

  • PDF

Experimental Analysis on the Heat Transfer Characteristics of Magnetic Fluids in a Cubic Cavity (자성유체의 밀폐공간내의 열전달 특성에 관한 실험적 연구)

  • Park, Joung-Woo;Seo, Lee-Soo;Chen, Chel-Ho;Park, Gil-Moon
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.3
    • /
    • pp.127-132
    • /
    • 2003
  • Natural convection of a magnetic fluid is different from that of Newtonian fluids because magnetic-body force exists in addition to gravity and buoyancy. In this paper, natural convection of a magnetic fluids (W-40) in a cubic cavity was examined by experimental method. One side wall was kept at a constant temperature (25 $^{\circ}C$), and the opposite side wall was also held at a constant but lower temperature (20 $^{\circ}C$). The magnetic fields of various magnitude were applied up and down by permanent magnets. We measured temperatures at 5 points which are the most suitable places in cavity by the analysis record. The thermo-sensitive liquid crystal film (R20C5A) was utilized in order to visualize wall-temperature distributions. Several kinds of experiments were carried out in order to clarify the influence of direction and intensity of magnetic fields on the natural convection. It was found that the natural convection of a magnetic fluids could be controlled by the direction and intensity of the magnetic fields.

Habitat Characteristics of Anuran Species Inhabiting Rice Fields of Western Mid-South Korea - In the Case of Daeho Reclamation Agricultural Land by Farming Practices - (우리나라 중서부지역 논 습지에 서식하는 무미 양서류의 서식처 특성 - 대호간척농지의 영농방법 중심으로 -)

  • Yoo, Nakyung;Do, Min Seock;Nam, Hyung-Kyu;Choi, Green;Son, Seock-Jun;Yoo, Jeong-Chil
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.4
    • /
    • pp.366-377
    • /
    • 2019
  • Paddy wetlands are a critical habitat for a variety of wild animals, and their rapid development and environmental changes pose a threat to the conservation of agrobiodiversity. The objectives of this study were to evaluate the habitat characteristics of anuran inhabiting paddy wetlands and identify major environmental variables affecting their distributions. The study was conducted in the Daeho reclaimed area in Dangjin, from March to October 2018. In this study, we found three anuran species (Pelophylax nigromaculatus, Hyla japonica and Pelophylax chosenicus). The environmental factors affecting the three species were identified as air temperature, humidity, water-depth, and micro-habitats. H. japonica were affected by water temperature, and P. chosenicus were affected by rice height and types of farming practices. All the three species richness was correlated with air temperature, humidity, and water-depth positively, and the three species used rice transplanted paddy fields the most. It was also found that paddy is the most preferred of the micro-habitats during the breeding season, so the survey area is considered to be used as the major breeding sites for the three species. P. chosenicus were more observed on environmental-friendly paddy fields than conventional paddy fields, which appears to be differences in their surroundings environment caused by predators and weeding. It will be needed to identify their relationship with predators, their preferred food resources and the richness and diversity of wild vegetation around paddy wetlands.