Loading [MathJax]/jax/output/CommonHTML/jax.js
  • Title/Summary/Keyword: Temperature field measurement

Search Result 614, Processing Time 0.025 seconds

The Planning on the Professional Education System through Agricultural Technique Measurement of Women Farmer (여성농업인의 농업기술측정을 통한 전문교육체계 계획)

  • Yoon, Jun-Sang
    • The Korean Journal of Community Living Science
    • /
    • v.18 no.2
    • /
    • pp.247-263
    • /
    • 2007
  • This study was complied to analyze the professional agricultural techniques level and to suggest a desirable direction for the professional education system for women farmer. The research was conducted by using in-field surveys and interviews. Data was gathered by questionnaire from 147 women farmer in five specialized crop regions: strawberry, cucumber, rose, apple, and oyster mushroom. The results obtained are as follows. First, the technique levels in computer usage and electronic commerce, machinery usage, pesticide and fertilizer utilization, facility automation, and eco-agricultural cultivation were low. Second, the demand for professional education, evaluated through technique level by standard management diagnosis, was recognized. Areas of concern included: cucumber (temperature control, carbonic acid gas control, grading, funds management), strawberry (light control, soil temperature control, irrigation watering, shipping), rose (temperature control, light control, funds management, cooperated management), oyster mushroom (growth cabinet sterilizer), and apple (flower bud pinching, defloration, fruit thinning, funds management). Based on the results of this study, the following are suggestions for the planning of a professional education system for women farmer. First, it needs to address formal education in marketing, machinery usage, facilities automation, and techniques in pesticide and fertilizer utilization. Second, it needs to be a multi- level program with appropriate terminology at every level which is suitable to each age and ability of women farmer. Third, it needs a more comprehensive manual developed by need analysis of women farmer and a larger lecturer pool for professional education.

  • PDF

Measurement and Analysis of Showcase Field Data (쇼케이스의 현장 데이터 측정 및 분석)

  • Shin You-Hwan;Oh Wang-Kyu;Park Ki-Ho;Kim Youngil;Shin Younggy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.436-443
    • /
    • 2005
  • Experimental study was performed to understand the operation of an on-site showcase working in a super discount store. Inlet and outlet temperatures of evaporator, condenser, expansion valve and compressor were measured for both air and refrigerant sides. Electric power consumption of compressors, defrosting heaters, cooling water pumps and etc. were measured. The operating characteristics of the showcase system under various working conditions were analyzed and discussed. During the defrosting process, the air temperature inside the showcase increased to 15C, which gave harmful effect to the frozen food. The collected data will serve as valuable information for diagnosing and improving the performance of showcases.

Correlation between optical properties and microstructure of undoped Zno thin films grown by PLD (PLD 법으로 성장한 undoped ZnO 박막의 광학적 특성과 미세구조 상관관계)

  • Lee, Deuk-Hee;Leem, Jae-Hyeon;Song, Yong-Won;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.101-102
    • /
    • 2009
  • We described the growth of undoped ZnO thin films and their optical properties changing with a various growth temperature. The un doped ZnO thin films were grown on c-Al2O3 substrates using pulsed laser deposition (PLD) at room temperature, 200, 400, and 600C, respectively. Field emission microscopy (FE-SEM) measurements showed that the grain size of undoped ZnO thin films are increasing as a increase of growth temperature. In addition, we were investigated that the structural and optical properties of undoped ZnO thin films by x-ray diffraction (XRD) and photoluminescence (PL) studied. Also, we could confirmed that the exciton luminescence was strongly related to charge trap by grain boundary of the samples using micro-PL measurement.

  • PDF

Aerodynamic Heating Analysis of Spike-Nosed Missile (스파이크가 부착된 유도탄의 공력 가열 해석)

  • Jung Suk Young;Yoon Sung Joon;Byon Woosik;Ahn Chang Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.21-29
    • /
    • 2004
  • Numerical analysis of aerodynamic heating for KPSAM is performed using aerodynamic heating model suitable to KPSAM, which has complex flow field resulting from the spike attached to the dome, such as large separation area and the strong shock/boundary layer interaction region around reattachment point on the dome. The aerodynamic heating model is validated and modified through the comparison between the flight test measurement and the thermal analysis results. TFD temperature sensors are installed on the dome to measure surface temperature during the flight. Computation results, obtained from the heat transfer analysis on the sensors, agree well with flight test data. The aerodynamic heating model provides heat transfer rate into surface as a boundary condition of unsteady 1D/axisymmetric thermal analysis on the missile structure. The axisymmetric thermal analysis using FLUENT is more versatile than the 1D analysis and can be applied to the heating problem related with complex structures and multi-dimensional heat transfer problems such as prediction of temperature rise at contact surface of different materials.

Effect of Process Parameter on Piezoelectric Properties of PZT Thin films (PZT 박막의 압전특성에 미치는 공정변수의 효과)

  • 김동국;지정범
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1060-1064
    • /
    • 2002
  • We have studied the effect of crystallization temperature, composition and film thickness, which are the fundamental processing parameters of lead zirconate titanate(PZT) thin film fabrication, in the respect of the piezoelectric properties by our pneumatic loading method(PLM). A great deal of research has been done in the field of characterization for piezoelectric thin films after the first report on the measurement for the piezoelectric coefficient of thin films in 1990. Even though the piezoelectric properties of thin films are very critical factors in the micro-electro mechanical system(MEMS) and thin film sensor devices, a few reports for the piezoelectric characterization are provided for the last decade unlikely the bulk piezoelectric devices. We have found that the piezoelectric properties of thin films are improved as the increase of crystallization temperature up to 750\^C and this behavior can be also explained by the analysis of dielectric polarization hysteresis loop, X-ray diffraction and scanning electron microscopy. The effect of Zr/Ti composition has been also studied. This gives us the fact that the maximum piezoelectricity is found near Morphotropic Phase Boundary(MPB) as bulk PZT system does.

A study on the Electrical Characteristics of α-Sexithiophene Thin Film (α-Sexithienyl 박막의 전기적 특성에 관한 연구)

  • 오세운;권오관;최종선;김영관;신동명
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.518-520
    • /
    • 1997
  • Recently, thiophene oligomer with short chain lengths has received much attention as model compounds for facilitating better understanding of electronic and optical properties of polymers, because oligomer is well-defined chemical systems and its conjugation chain length can be exactly controlled. Moreover, organic this films based on conjugated thiophene oligomer have potential for application to electronic and optoelectronic devices such as MISFETs(metal-insulator-semiconductor field-effect transistors) and LEDs(light-emitting diodes). However, there is little knowledge on electronic and structural properties of linear-conjugated oligothiophenes in solid states, compared with those in solutions. α-sexithienyl(α-6T) thin-films were deposited by OMBD(Organic Molecular Beam Deposition) technique, where the α-6T was synthesized and purified by the sublimation method. The α-6T films were deposited under various conditions. The effects of deposition rate, substrate temperature, and vacuum pressure on the formation of these films have been studied. The molecules in the α-6T film deposited at a low deposition rate under a high vacuum were aligned almost perpendicular to the substrate. The α-6T films deposited at an elevated substrate temperature showed higher conductivity than the film deposited at room temperature. Electrical characterization of these films will be also executed by using four-point probe measurement technique.

  • PDF

New MOD solution for the preparation of high Jc REBCO superconducting films (고특성 REBCO 초전도 박막 제조를 위한 새로운 MOD 전구 용액 제조)

  • Kim, Byeong-Joo;Hong, Gye-Won;Lee, Hee-Gyoun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2001-2003
    • /
    • 2005
  • Various organic acid were used in order to prepare new metalorganic deposition solution for high quality REBa2Cu3O7δ (RE=Y, Eu, Gd) films. Prepared fluorine free MO precursor solution was coated on single crystal (001) LaAlO3 (LAO) by dip coating method. Processing parameters such as oxygen partial pressure, water vapor, ramping rate and pyrolysis temperature etc havebeen controlled in order to make high Jc films with a good epitaxial relationship with substrate. 0.5 micron-thick film was obtained by single coating and no crack appeared after calcination. Oxygen partial pressure was varied in the range of 1001,000ppm and conversion heat treatment was carried out at the temperature of 725765C. A critical transition temperature (Tc0) of 90K and a critical transport current density (Jc) of $>0.5MA/cm^2$ (77K and self-field) were demonstrated for the YBCO film on (001) oriented LAO substrates with a thickness of 0.5 micron. Ic was determined by utilizing a transport measurement. SEM and XRD investigations confirmed that films were grown epitaxially onto the LAO single crystal substrate. It is thought that fluorine free new MOD solutionis promising for high quality REBCO films.

  • PDF

Operation result of the Cryogenic and Mechanical Measurement System for KSTAR (KSTAR 저온 및 구조 계측 시스템 운전 결과)

  • Kim, Y.O.;Chu, Y.;Yonekawa, H.;Bang, E.N.;Lee, T.G.;Baek, S.H.;Hong, J.S.;Lee, S.I.;Park, K.R.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.26-30
    • /
    • 2009
  • Korea Superconducting Tokamak Advanced Research(KSTAR) device is composed of 30 superconducting magnets, magnet structure, vacuum vessel, cryostat, current feeder system, and etc. KSTAR device is operated in the cryogenic temperature and high magnetic field. We install about 800 sensors - temperature sensors, stain gages, displacement gages, hall sensors - to monitor the thermal, mechanical, electrical status of KSTAR during operation. As a tremendous numbers of sensors should be installed for monitoring the KSTAR device, the method of effective installation was developed. The sensor test was successfully carried out to check its reliability and its reproduction in the cryogenic temperature. The sensor signal is processed by PXI-based DAQ system and communicated with central control system via machine network and is shown by Operator Interface(OPI) display in the main control room. In order to safely operate the device, any violations of mechanical & superconductive characteristic of the device components were informed to its operation system & operator. If the monitored values exceed the pre-set values, the protective action should be taken against the possible damage. In this paper, the system composition, operation criteria, operation result were presented.

Magnetic Properties of Transition Metal Doped La0.5Ca0.5(Mn0.98TM0.02)O3(TM=Cr, Ti) (전이금속을 치환한 란탄망간산화물계 La0.5Ca0.5(Mn0.98TM0.02)O3(TM=Cr, Ti)의 자성 특성 연구)

  • Kang, J.H.;Jun, S.J.;Park, J.S.;Lee, Y.P.;Lee, Y.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.14-17
    • /
    • 2007
  • Magnetic properties of transition metal doped La0.5Ca0.5(Mn0.98TM0.02)O3(TM=Cr and Ti) are studied. The samples are synthesized by the conventional solid-state method. Using vibrating sample magnetometer magnetization-temperature measurement were carried out with zero field cooling and field cooling at 50 Oe. Cr-doped sample shows cluster or spin glass like behavior while Ti doped does not. Curie temperature obtained were decreased from that of LCMO(245.5 K). Curie temperatures of Cr-doped and Ti-doped samples are 235.5 K and 232.7 K, respectively. The temperature-dependent coercivity Hc(T) was also measured. The coercive force continuously decreases with the substitution of Cr and Ti, The result can be understood in terms of the interaction between defect and domain wall.

Study of the Fire Risk Caused by the Use of a Bimetal type Thermometer in the Drying Equipment (바이메탈식 온도센서를 적용한 건조설비에서의 화재 위험성 연구)

  • Park, Nam-Kyu;Kim, Jin-Pyo;Nam, Jung-Woo;Park, Jong-Taek;Song, Jae-Yong
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.73-78
    • /
    • 2017
  • In this paper, the fire risk using a bimetal type thermometer for construction installation is presented. Because construction equipment is used widely in the field and the site is exposed to explosions and fire by combustible gas or fume, strong restrictions on the structure and usage are applied. Moreover, the risk of fire increases as precise temperature measurements are poorly conducted via an inner temperature sensor inside construction furnace. Therefore, this paper presents the results of structural analysis of a bimetal temperature sensor which is used widely in construction installation and temperature measurement experiments relative to the material property of the target object. The results revealed the relatively precise temperature of the liquid object, whereas those of the gas and solid object showed a lower temperature compared to the real temperature. This shows that bimetal-type temperature sensor is more suitable for measuring a liquid state object than measuring a gas or solid state object.