Processing math: 100%
  • Title/Summary/Keyword: Temperature field measurement

Search Result 614, Processing Time 0.028 seconds

Soil Moisture Content Estimation Using Remote Sensing Technique (원격 측정 기법을 이용한 토양 함수비의 측정)

  • Lee, Jae Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.535-542
    • /
    • 1994
  • Remote sensing technique is based on the estimation of land surface characteristics from the measurement of the emitted radiation from the earth. The hydrologically related parameters studied using this approach include surface temperature, evapotranspiration, soil moisture, precipitation and snow. This study introduces a method for estimating moisture content of a bare soil from the observed and simulated brightness temperature. In a bare soil, microwave emission depends on moisture content, soil temperature, and surface roughness. The method is based on a radiative transfer model with some modifications of Fresnel reflection coefficient to take into account the effect of surface roughness. One smooth bare field and two fields with different surface roughness are prepared for the study. The results indicate that the effect of surface roughness is to increase the soil's brightness temperature and to reduce the slope of regression between brightness temperature and moisture contents.

  • PDF

Characteristics of Preheated Air Combustion in a Laminar Premixed Flame (층류 예혼합 화염의 예열공기 연소특성)

  • Lee, Jong-Ho;Lee, Seung-Young;Hahn, Jae-Won;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.1039-1046
    • /
    • 2002
  • Co-flow axisymmetric laminar premixed flame of methane was used to study the influence of air temperature and N2 addition on the flame structure, temperature field and emission characteristics. OH 2-D images and temperatures along the centerline were measured experimentally by PLIF and CARS techniques respectively to observe the influences of dilution and thermal effects of N2 in the gas mixture. Also, the concentration of NOx was measured at each condition by gas analyser to see the suppression effect of N2 addition on NOx emissions. It was found that OH concentrations distribute widely as air temperature goes higher, while the effect of N2 addition is not significant. But N2 addition highly contributes to the flame front and NOx emissions which was argued to be due to the reduction of flame temperature. In accordance with experimental study, numerical simulation using CHEMKlN code was carried out to compare the temperature results with those acquired by CARS measurement, and we could find that there is good agreement between those results.

Measurement of Cross-sectional Temperature Distribution in Micro-scale Gap Fluid Using LIF Technique in Combination with CLSM (LIF 및 CLSM을 결합한 미소 간극 내 유체의 단면 온도 분포 측정 기법)

  • Jeong, Dong-Woon;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.834-841
    • /
    • 2006
  • In the present wort the Laser-induced Fluorescence (LIF) technique and Confocal Laser Scanning Microscopy (CLSM) have been combined to measure the temperature distribution across a micro-scale liquid layer as a direct and non-invasive method. Only the fluorescent light emitted from a very thin volume around a focal plane can be selectively detected, and it enables us to measure the liquid temperatures even at the close vicinity of the walls. As an experimental verification, a test section consists of two flat plates (for heating and cooling, respectively) separated by about 240 microns was made, and the methanol mixed with a temperature-sensitive dye, Rhodamine B, was filled in the gap between them. The measured temperature distribution across the gap showed good linearity, which is a typical characteristic of conduction heat transfer through a thin liquid layer. In result, the CLSM-LIF technique proposed in the present study was found to be a promising method to measure the local temperatures in the liquid flow field in microfluidic devices.

Degradation Degree Evaluation of Heat Resisting Steel by Electrochemical Technique (Part I : Mechanism and Its Possibility of Field Application) (電氣化學的 方法에 의한 耐熱鋼의 劣化度 測定 제1보)

  • 정희돈;권녕각
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.598-607
    • /
    • 1992
  • The environment degradation of structural steel under high temperature is one of the key phenomena governing the availability and life of plant. This degradation resulted from the microstructural changes due to the long exposure at high temperature affect the mechanical properties such as creep strength and toughness. For instance, boiler tube materials usually tend to degrade, after long term operation, by precipitates, spherodizing, coarsening, and change in chemical composition of carbides. In this study, the material degradation under high temperature exposure was investigated by evaluating the carbide precipitation. The electrochemical polarization method was facilitated to investigate the precipitation and coarsening of carbides. It was shown by the modified electrochemical potentiokinetic reactivation (EPR) tests that the passivation of Mo-rich carbides did not occur even in the anodic peak current (Ip) which indicates the precipitation of Mo6C was also observed. And it was assured that special electrolytic cell assembled in this research can be used for the detection of Mo6C precipitation in the field.eld.

A Study on Liquified Petroleum Gas(LPG) Fuel Quantitative Method using Coriolis Mass Flowmeter (코리올리 질량유량계를 이용한 액화석유가스(LPG) 정량 측정 방법 연구)

  • Park, Tae-Seong;Seong, Sang-Rae;Yim, Eui-Soon;Lee, Joung-Min;Lee, Myung-Sig;Kang, Hyung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.109-122
    • /
    • 2018
  • Domestic LPG meters are being tested for LPG quantification in accordance with the "Measures Act". The LPG meter is re-tested every three years in accordance with the "Enforcement Decree of the Measures Act". The maximum permissible error within the test is within ±1.0, and the tolerance is within ±1.5. For the quantitative measurement of LPG, a hydrometer for LPG, a balance, and a pressure vessel are used. The volume of LPG varies in depending on the temperature and pressure. The current quantitative measurement method of LPG requires the measurement of temperature, pressure and density in order to determine the volume of LPG, respectively, and some equipments are needed accordingly. Coriolis mass flowmeter, on the other hand, measure the mass flow, density and temperature at the same time, and can be converted and calculated to the required values using a computer program, also it is widely applied in the industrial field. In this study, the volume of LPG was measured using a Coriolis mass flowmeter as a basic study of LPG quantitative measurement. In addition, it is shown that it is possible to apply for the LPG quantitative measurement using the Coriolis mass flowmeter by comparing it with the conventional LPG quantitative measurement method.

Flow Characteristics of Cryogenic Butterfly Valve for LNG Carrier (Part 1 : CFD Analysis and its Comparison with Experimentation) (LNG선용 버터플라이밸브의 유동특성에 관한 연구 (제1부 : CFD해석과 실험결과의 비교))

  • Kim, Sang-Wan;Choi, Young-Do;Kim, Jung-Hwan;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.13-19
    • /
    • 2008
  • Butterfly valves are widely used as control valves for industrial process. For the definition of optimum configuration of the valve, wide range of related studies has been actively conducted in the case of working fluids of water or air under the normal temperature. Recently, internal flow and performance characteristics of cryogenic butterfly valve for LNG carrier take a growing interest in the field of research and development. Therefore, present study is aimed to investigate the internal flow and performance characteristics of the cryogenic butterfly valve because the study result for the valve can be hardly found at present. Part 1 of this paper describes the study result of a butterfly valve model under the condition of the normal temperature. Succeeding Part 2 of this paper will describe the internal flow characteristics of a cryogenic butterfly valve for LNG carrier. The results of Part 1 show that pressure loss coefficients and flow rate coefficients obtained by the present experiment and CFD analysis agree well each other. Moreover, internal flow visualization for the valve by CFD analysis and PIV measurement have revealed complicated flow patterns of the internal flow field in detail.

Single-Crystal like MgB2 thin films grown on c-cut sapphire substrates

  • Duong, Pham Van;Ranot, Mahipal;Kang, Won Nam
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.7-9
    • /
    • 2014
  • Single-crystal like MgB2 thin film was grown on (000l) Al2O3 substrate by using hybrid physical-chemical vapor deposition (HPCVD) system. Single crystal properties were studied by X-ray diffraction (XRD) and the full width at half maximum (FWHM) of the (0001) MgB2 peak is 15, which is very close to that has been reported for MgB2 single-crystal. It indicates that the crystalline quality of thin film is good. Temperature dependence on resistivity was investigated by physical property measurement system (PPMS) in various applied fields from 0 to 9 T. The upper critical field (Hc2) and irreversibility field (Hirr) were determined from PPMS data, and the estimated values are comparable with that of MgB2 single-crystals. The thin film shows a high critical temperature (Tc) of 40.4 K with a sharp superconducting transition width of 0.2 K, and a high residual resistivity ratio (RRR=21), it reflects that MgB2 thin film has a pure phase structure.

Development of heater and basic deposition of YBCO superconducting thin film using the pulsed laser deposition method

  • Jeongtae Kim;Insung Park;Gwantae Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.4
    • /
    • pp.24-29
    • /
    • 2024
  • Various thin film deposition methods such as RCE-DR (Reactive Co-Evaporation by Deposition and Reaction), MOD(Metal Organic Deposition), MOCVD(Metal Organic Chemical Vapor Deposition) and PLD(Pulsed Laser Deposition) have been used to fabricate 2G HTS (Second-Generation High-Temperature Superconducting) tapes. Especially, 2G HTS tapes fabricated by the PLD process show excellent electrical current conduction properties under high magnetic field and have recently become a popular research field worldwide. In this study, we have examined the substrate heating temperature, oxygen partial pressure, and pulsed laser conditions in vacuum, which are essential conditions for manufacturing 2G HTS tapes by pulsed laser process. we have optimized conditions for the continuous deposition of YBCO (YBa2Cu3O7-δ) superconducting layers using the reel-to-reel method on substrates coated with functional layers. The fabricated tapes were evaluated for their characteristics by analyzing biaxial alignment properties using XRD for 2-theta, in-plane texture, and out-of-plane texture and critical current measurement using the Hall-Ic method.

Trapping centers due to native defects in the CdIn2S4 films grown by hot wall epitaxy

  • Hong, Myung-Seuk;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.167-168
    • /
    • 2007
  • CdIn2S4 (110) films were grown on semi-insulating GaAs (100) by a hot wall epitaxy method. Using photocurrent (PC) measurement, the PC spectra in the temperature range of 30 and 10 K appeared as three peaks in the short wavelength region. It was found that three peaks, A-, B-, and C-excitons, correspond to the intrinsic transition from the valence band states of Γ4(z),Γ5(x),andΓ5(y) to the exciton below the conduction band state of Γ1(s), respectively. The 0.122 eV crystal field splitting and the 0.017 eV spin orbit splitting were obtained. Thus, the temperature dependence of the optical band gap obtained from the PC measurement was well described by Eg(T)=2.7116eV - (7.65×104eV/K)T2/(425+T). But, the behavior of the PC was different from that generally observed in other semiconductors. The PC intensities decreased with decreasing temperature. This phenomenon had ever been reported at a PC experiment on the bulk crystals grown by the Bridgman method. From the relation of log Jph vs 1/T, where Jph is the PC density, two dominant levels were observed, one at high temperatures and the other at low temperatures. Consequently, the trapping centers due to native defects in the CdIn2S4 film were suggested to be the causes of the decrease in the PC signal with decreasing temperature.

  • PDF

Prediction of Hot Gas Behavior in High Voltage Self-blast Circuit Breaker (초고압 복합소호 차단부의 열가스 거동 예측)

  • Kim, Jin-Bum;Yeo, Chang-Ho;Seo, Kyoung-Bo;Kweon, Ki-Yeoung;Lee, Hahk-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2494-2499
    • /
    • 2007
  • Self-blast circuit breakers utilize the energy dissipated by the arc itself to create the required conditions for arc quenching during the current zero. The high-current simulation provides information about the mixing process of the hot PTFE cloud with SF6 gas which is difficult to access for measurement. But it is also hard to simulate flow phenomenon because the flow in interrupter with high current, SF6-PTFE mixture vapor and complex physical behavior including radiation, calculation of electric field. Using a commercial computational fluid dynamics(CFD) package, the conservation equation for the gas and temperature, velocity and electric fields within breaker can be solved. Results show good agreement between the predicted and measured pressure rise in the thermal chamber.

  • PDF