• Title/Summary/Keyword: Temperature difference energy

Search Result 1,108, Processing Time 0.032 seconds

CFD Analysis to Suppress Condensate Water Generated in Gas Sampling System of HANARO (하나로 기체시료채취계통에서 생성된 응축수 억제를 위한 CFD 해석)

  • Cho, SungHwan;Lee, JongHyeon;Kim, DaeYoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.327-336
    • /
    • 2020
  • The high-flux advanced neutron application reactor (HANARO) is a research reactor with thermal power of 30 MW applied in various research and development using neutrons generated from uranium fission chain reaction. A degasifier tank is installed in the ancillary facility of HANARO. This facility generates gas pollutants produced owing to internal environmental factors. The degasifier tank is designed to maintain the gas contaminants below acceptable levels and is monitored using an analyzer in the gas sampling panel. If condensate water is generated and flows into the analyzer of the gas sampling panel, corrosion occurs inside the analyzer's measurement chamber, which causes failure. Condensate water is generated because of the temperature difference between the degasifier tank and analyzer when the gas flows into the analyzer. A heating system is installed between the degasifier tank and gas sampling panel to suppress condensate water generation and effectively remove the condensate water inside the system. In this study, we investigated the efficiency of the heating system. In addition, the variations in the pipe temperature and the amount of average condensate water were modeled using a wall condensation model based on the changes in the fluid inlet temperature, outside air temperature, and heating cable-setting temperature.

Influence of New Town Development on the Urban Heat Islands - ln the Case of Pan-Gyo Area and Bun-Dang New Town - (신도시 개발이 도시열섬 형성에 미치는 영향 - 분당신도시와 판교지역을 중심으로 -)

  • 송영배
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.4
    • /
    • pp.37-46
    • /
    • 2002
  • The main purpose of this research is to discuss the urban heat island which will be caused by urbanization, especially by the construction of new town on a wide green zone. Over the last ten years, five new towns have been developed around the Seoul metropolitan area. However these new towns become bedroom communities and create traffic problems between Seoul and its surrounding areas because of an increase in population and a lack of roads and other infrastructures. The construction of another such new town is under consideration in the Pan-gyo area. But it is important that Pan-gyo remains a wide green zone. Many studies show that green space can play an important role in improving urban eco-meteorological, ameliorative capability and air hygiene. The objective of this study is to analyze the urban heat islands of Bund-Dang Si which was constructed in 1996 and of the Pan-Gyo area planned as new town. To investigate the local thermal environment and its negative effects caused by change of the land use type and urbanization we used LANDSAT TM images for extraction of urban surface temperature according to change of land use over 15 years. These data were analyzed together with digital land use and topographic data. As a study result, we found that the thermal island of this area from 1985 to 1999 rapidly increased with a difference of mean temperature of more than 12'E. Before construction of Bun-Dang Si the temperature of this area was the same as the forest, but during the new town construction in 1991, an urban heat island developed. The temperature of forest with a size of over 50% of the investigation area was lowest, which leads us to conclude that the forest cools the urban and its surroundings. The mean temperature of the residential and commercial area is more than +4.5$^{\circ}C$ higher then forest, so this method of land use is the main factor increasing the urban heat island. Urban heat islands and green space play an important role in urban wind systems, i.e. Thermal Induced Air Exchange and Structural Wind Circulation, because of their special properties with regard to energy balance between constructed urban and land. The skill to allocate land use types in urban areas is a very important planning device to reduce air pollution and induce the fresh cold air from green space. An urban climatic experiment featuring a numerical wind simulation study to show the air corridor will be published in a following research paper.

Phase Evolution in LiMO2(M=Co,Ni) Cathode Materials for Secondary Lithium Ion Batteries : Effect of Temperature and Oxygen Partial Pressure (리튬 2차 전지용 양극활물질 LiMO2(M=Co,Ni)의 온도와 산소 분압에 따른 상전이 거동)

  • Huang, Cheng-Zhu;Kim, Ho-Jin;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.292-297
    • /
    • 2005
  • $LiMO_{2}(M=Co,Ni)$ samples were synthesized with $Li_{2}CO_{3},\;Co_{3}O_{4}$, and NiO by the solid-state reaction method. In the case of $LiCoO_{2}$, at low temperature$(T=400^{\circ}C)$ spinel structure was synthesized and the obtained spinel phase was transformed to layered phase at high temperature$(T\ge600^{\circ}C)$. The phase transition behaviors of $LiCoO_{2}$ were investigated with various heating temperature and time. The rate of transition was directly proportional to the concentrations of reactant, and activation energy of reaction was around 6.76 kcal/mol. When CoO(rock salt structure) was used as a starting material instead of $Co_{3}O_{4}$(spinel structure), layered structure of $LiCoO_{2}$ was obtained at low temperature. In the case of $LiNiO_{2}$ the transition from layered structure to rock salt structure occurred easily by disordering/ordering reaction, but did not occur in $LiCoO_{2}$. The difference in metal ion radii in $LiCoO_{2}$ and $LiNiO_{2}$ results in different behaviors of phase transitions.

Low-Temperature FTIR Spectroscopy of Bacteriorhodopsin and Phoborhodopsin

  • Kandori, Hideki;Furutani, Yuji;Shimono, Kazumi;Iwamoto, Masayuki;Sudo, Yuki;Shichida, Yoshinori;Kamo, Naoki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.106-109
    • /
    • 2002
  • Archaeal rhodopsins possess retinal molecule as their chromophores, and their light-energy and light-signal conversions are triggered by all-trans to 13-cis isomerization of the retinal chromophore. Relaxation through structural changes of protein then leads to functional processes, proton pump in bacteriorhodopsin (bR) and transducer activation in phoborhodopsin (pR). It is known that sensory rhodopsins can pump protons in the absence of their transducers. Thus, there should be common and specific features in their protein structural changes for function. In this paper, our r ecent studies on pR from Natronobacterium pharaonis (ppR) by means of low-temperature Fourier-transform infrared (FTIR) spectroscopy are compared with those of bR. In particular, protein structural changes upon retinal photoisomerization are studied. Comparative investigation of ppR and bR revealed the similar structures of the polyene chain of the chromophore and water-containing hydrogen-bonding network, whereas the structural changes upon photoisomerization were more extended in ppR than in bR. Extended protein structural changes were clearly shown by the assignment of the C=O stretch of Asnl05. FTIR studies of a ppR mutant with the same retinal binding site as in bR revealed that the Schiff base region is important to determine their colors.

  • PDF

Surface structure modification of vertically-aligned carbon nanotubes and their characterization of field emission property

  • adil, Hawsawi;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.159-159
    • /
    • 2016
  • Vertically-aligned carbon nanotubes (VCNT) have attracted much attention due to their unique structural, mechanical and electronic properties, and possess many advantages for a wide range of multifunctional applications such as field emission displays, heat dissipation and potential energy conversion devices. Surface modification of the VCNT plays a fundamental role to meet specific demands for the applications and control their surface property. Recent studies have been focused on the improvement of the electron emission property and the structural modification of CNTs to enable the mass fabrication, since the VCNT considered as an ideal candidate for various field emission applications such as lamps and flat panel display devices, X-ray tubes, vacuum gauges, and microwave amplifiers. Here, we investigate the effect of surface morphology of the VCNT by water vapor exposure and coating materials on field emission property. VCNT with various height were prepared by thermal chemical vapor deposition: short-length around $200{\mu}m$, medium-length around $500{\mu}m$, and long-length around 1 mm. The surface morphology is modified by water vapor exposure by adjusting exposure time and temperature with ranges from 2 to 10 min and from 60 to 120oC, respectively. Thin films of SiO2 and W are coated on the structure-modified VCNT to confirm the effect of coated materials on field emission properties. As a result, the surface morphology of VCNT dramatically changes with increasing temperature and exposure time. Especially, the shorter VCNT change their surface morphology most rapidly. The difference of field emission property depending on the coating materials is discussed from the point of work function and field concentration factor based on Fowler-Nordheim tunneling.

  • PDF

Development of Riverbank Filtration Water Supply and Return System for Sustainable Green House Heating and Cooling (지속가능 온실 냉난방을 위한 강변여과수 취수 및 회수시스템 개발)

  • Cho, Yong;Kim, Dae-Geun;Kim, Hyoung-Soo;Moon, Jong-Pil
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.20-29
    • /
    • 2012
  • The green house on the waterfront is air-conditioned by a water-source heat pump system with riverbank filtration water. In order to supply riverbank filtration water in alluvium aquifer, the riverbank filtration facility for water intake and recharge, two pumping wells and one recharge well, has been constructed. The research site in Jinju, Korea was chosen as a good site for riverbank filtration water supply by the surface geological survey, electrical resistivity soundings, and borehole surveys. In the results of two boreholes drilling at the site, it was revealed that the groundwater table is about 3 m under the ground, and that the sandy gravel aquifer layer in the thickness of 6.5 m and 3.5 m occurs at 5 m and 7 m in depth below the ground level respectively. To prevent the recharge water from affecting the pumped water which might be used as heat source or sink, the distance between pumping and recharge wells is designed at least 70 m with a quarter of recharged flow rate. It is predicted that the transfer term, the recharge water affects the pumping well, is over 6 months of heating season. Hydrogeological simulation and underground water temperature measurement have been carried out for the pumping and recharge well positions in order to confirm the capability of sustainable green house heating and cooling.

Heat transfer characteristics of the heat pipe using simplified heat transfer model (단순 열전달 모델을 이용한 히트파이프의 열전달 성능특성에 관한 연구)

  • Seo, Jae-Hyeong;Bang, Yu-Ma;Seo, Lee-Soo;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • The objective of this study was to examine numerically the heat transfer and flow characteristics of the heat pipe with a wick using the simplified heat transfer model to enhance the cooling effects of high heat flux devices and minimizing the energy consumption for electric vehicles. The heat pipe with a wick was analyzed using commercial software with COMSOL and water was used as the working fluid. The velocity and temperature characteristics of the heat pipe were simulated numerically along the heat pipe and the local and average Nusselt numbers were calculated. As a result, the driving force occurred because of the temperature difference between the hot side and the cold side. The heat transfer of the heat pipe occurred from the hot side to the cold side and increased toward the center position. In addition, the average Nusselt numbers were 1.88 for the hot side and 0.1 for the cold side, and the maximum Nusselt number was 4.47 for the hot side and 0.7 for the cold side.

Tower-based Flux Measurement Using the Eddy Covariance Method at Ieodo Ocean Research Station (이어도해양과학기지에서의 에디 공분산 방법을 이용한 플럭스 관측)

  • Lee, Hee-Choon;Lee, Bang-Yong;Kim, Joon;Shim, Jae-Seol
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.145-154
    • /
    • 2004
  • Surface energy and $CO_2$ fluxes have been measured over an ocean at Ieodo Ocean Research Station of KORDI since May 2003. Eddy covariance technique, which is a direct flux measurement, is used to quantitatively understand the interaction between the ocean surface and the atmospheric boundary layer. Although fluxes were continuously measured during the period from May 2003 to February 2004, the quality control of these data yielded <20% of data retrieval. The atmospheric stability did not show any distinct dirunal patterns and remained near-neutral to stable from May to June but mostly unstable during fall and winter in 2003. Sensible heat flux showed a good correlation with the difference between the sea water temperature and the air temperature. The maximum fluxes of sensible heat and latent heat were $120Wm^{-2}$ and $350Wm^{-2}$ respectively, with an averaged Bowen ratio of 0.2. The ocean around the tower absorbed $CO_2$ from the atmosphere and the uptake rates showed seasonal variations. Based our preliminary results, the daytime $CO_2$ flux was steady with an average of $-0.1 mgCO_2m^{-2}s^{-1}$ in summer and increased in winter. The nighttime $CO_2$ uptake was greater and fluctuating, reaching up to $-0.1 mgCO_2m^{-2}s^{-1}$ but these data require further examination due to weak turbulent mixing at nighttime. The magnitude of $CO_2$ flux was positively correlated with the half hourly changes in horizontal mean wind speed. Due to the paucity of quality data, further data collection is needed for more detailed analyses and interpretation.

Nitrogen-Oxygen Separation Characteristics by Polyimide Membrane System for Controlled Atmosphere Storage (CA저장을 위한 폴리이미드 막 시스템의 질소-산소 분리특성)

  • 이호원;현명택;고정삼
    • Food Science and Preservation
    • /
    • v.5 no.3
    • /
    • pp.239-246
    • /
    • 1998
  • Polyimide membrane system was designed for manufacturing nitrogen-enriched gas, and basic technical data was suggested for appling this system to controlled atmosphere storage. The permeability characteristics of pure oxygen and nitrogen could be explained by dual-mode sorption model. There was substantial decrease in the permeation rates of oxygen, which is the more permeable gas, through the polyimide membrane due to the presence of nitrogen in comparison with pure oxygen. However, the permeation rates of nitrogen was increased by the presence of oxygen. The ideal separation factor was in the range of 5 to 6 in the range of temperature and pressure difference studied, and the separation factor of air was lower than the ideal separation factor. The increase of ideal separation factor with increasing temperature is due to the fact that the activation energy for oxygen is larger than that for nitrogen. Nitrogen concentration decreased rapidly with increasing product recovery, and it was found that this is a major operating factor to obtain nitrogen concentration required for controlled atmosphere storage. A relation equation, by which nitrogen concentration in storehouse can be predicted, was suggested under the establishment of a hypothetical model for controlled atmosphere storage process using polyimide membrane system.

  • PDF

Catalytic Effects and Characteristics of Ni-based Catalysts Supported on TiO2-SiO2 Xerogel

  • Jeong, Jong-Woo;Park, Jong-Hui;Choi, Sung-Woo;Lee, Kyung-Hee;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2288-2292
    • /
    • 2007
  • The catalytic activities of nickel-based catalysts were estimated for oxidizing acetaldehyde of VOCs exhausted from industrial facilities. The catalysts were prepared by sol-gel methods of SiO2 and SiO2-TiO2 as a xerogel followed by impregnating Al2O3 powder with the nickel nitrate precursor. The crystalline structure and catalytic properties for the catalysts were investigated by use of BET surface area, X-ray diffraction (XRD), Xray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR) techniques. These results show that nickel oxide is transformed to NiAl2O4 spinel structure at the calcination temperature of 400 °C in response to the steps with after- and co-impregnation of Al2O3 powder in sol-gel process. The NiAl2O4 could suppress the oxidation reaction of acetaldehyde by catalysts. The NiO is better dispersed on SiO2-TiO2/Al2O3 support than SiO2/Al2O3 and SiO2-TiO2-Al2O3 supports. From the testing results of catalytic activities for oxidation of acetaldehyde, Catalysts showed a big difference in conversion efficiencies with the way of the preparation of catalysts and the loading weight of nickel. The catalyst of 8 wt.% Ni/TiO2-SiO2/Al2O3 showed the best conversion efficiency on acetaldehyde oxidation with 100% conversion efficiency at 350 °C.